Motores de Combustão Interna

Conceitos Básicos

Luiz Carlos Martinelli Jr.
Unijuí – Campus Panambi
Sumário

INTRODUÇÃO...33

DEFINIÇÃO DE MOTORES DE COMBUSTÃO INTERNA ..33

CLASSIFICAÇÃO DOS MCI ..33

VANTAGENS & DESVANTAGENS ..34

DEFINIÇÕES...34

PRINCIPAIS COMPONENTES DOS MCI...37

CICLOS DE POTÊNCIA ...61

VEÍCULOS HÍBRIDOS ...55

MOTOR QUASITURBINE ...53

COMO FUNCIONA ..53

MOTOR WANKEL ...47

VEÍCULOS HÍBRIDOS ...55

SELEÇÃO DOS COMPONENTES ...56

1 – O motor elétrico ...56

2 – Armazenamento da Energia Elétrica ..57

3 – Os motores Térmicos ..57

HONDA INSIGHT ..57

FUEL CELL – CÉLULA DE COMBUSTÍVEL..58

CICLOS DE POTÊNCIA ...61

CICLO DE CARNOT ...61

CICLOS DE OTTO E DIESEL ...62

CICLO OTTO ..62

Ciclo Quatro Tempos, Ciclo Otto ..63

Ciclo Dois Tempos, Ciclo Otto ...63

Ciclo de Diesel ...64

Ciclo Quatro Tempos, Ciclo Diesel ...65

Ciclo Dois Tempos, Ciclo Diesel ..65

CICLO MISTO ...66

PRINCIPAIS COMPONENTES DOS MCI ...67
BLOCO DO MOTOR .. 67
CABEÇOTE .. 64
CARTER .. 64
PISTÃO .. 64
BIELA ... 65
VIRABREQUIM ... 65
EIXO COMANDO DE VÁLVULAS ... 65
VÁLVULAS ... 65
CONJUNTO DE ACIONAMENTO DAS VÁLVULAS .. 66

COMBUSTÍVEIS .. 66
DIESEL .. 66
ENERGIA TÉRMICA DO COMBUSTÍVEL ... 67
RELAÇÃO AR-COMBUSTÍVEL .. 68
GASES DE ESCAPE - EMISSÕES ... 68

A COMBUSTÃO NO MOTOR DIESEL .. 69
TIPOS DE INJEÇÃO DE COMBUSTÍVEL ... 70
COMPONENTES DO SISTEMA DE INJEÇÃO .. 72

LUBRIFICAÇÃO DO MOTOR ... 76
FILTROS ... 77
TROCADOR DE CALOR .. 77
ÓLEO LUBRIFICANTE .. 77
CLASSIFICAÇÕES .. 78

REFRIGERAÇÃO (OU ARREFECIMENTO) .. 80
ÁGUA DE REFRIGERAÇÃO .. 82

SISTEMA DE PARTIDA .. 82

EFEITO DO TURBO-ALIMENTADOR .. 83

TERMOS IMPORTANTES (PORTUGUÊS - INGLÊS) ... 88

BIBLIOGRAFIA ... 89
INTRODUÇÃO

Esta apostila foi criada com intenção de dar subsídios ao aluno do Curso de Engenharia Mecânica da Unijuí. A mesma foi construída utilizando-se de informações adquiridas da rede mundial de computadores (Internet), livros e revistas especializadas acrescentando-se a tudo isso uma pitada particular do professor.

Procura-se desenvolver, fora o conhecimento básico necessário, um pouco da história dos veículos automotores, colocando em uma linha do tempo a história de várias empresas famosas, seus fundadores e curiosidades.

Ao final desta, coloca-se uma pequena bibliografia e sites interessantes sobre o assunto.

DEFINIÇÃO DE MOTORES DE COMBUSTÃO INTERNA

São Máquinas Térmicas Motoras nas quais a energia química dos combustíveis se transforma em trabalho mecânico (o fluido de trabalho consiste nos produtos da combustão).

CLASSIFICAÇÃO DOS MCI

Os MCI podem ser classificados em:

a) Quanto a propriedade do gás na admissão:
 → ar (Diesel)
 → mistura ar-combustível (Otto)

b) Quanto à ignição
 ■ por centelha (ICE) * spark - ignition (SI)
 ■ por compressão (ICO) * compression - ignition (CI)

c) Quanto ao movimento do pistão
 → Alternativo (Otto, Diesel)
 → Rotativo (Wankel, Quasiturbine)

d) Quanto ao ciclo de trabalho
 → 2 tempos
 → 4 tempos
e) Quanto ao número de cilindros
 → monocilíndricos
 → policilíndricos

f) Quanto à disposição dos cilindros
 → em linha → opostos (boxer)
 → em V → em estrela (radial)

g) Quanto à utilização
→ ESTACIONÁRIOS - Destinados ao acionamento de máquinas estacionárias, tais como Geradores, máquinas de solda, bombas ou outras máquinas que operam em rotação constante;

→ INDUSTRIAIS - Destinados ao acionamento de máquinas de construção civil, tais como tratores, carregadeiras, guindastes, compressores de ar, máquinas de mineração, veículos de operação fora-de-estrada, acionamento de sistemas hidrostáticos e outras aplicações onde se exijam características especiais específicas do acionador;

→ VIFICULARES - Destinados ao acionamento de veículos de transporte em geral, tais como caminhões e ônibus;

→ MARÍTIMOS - Destinados à propulsão de barcos e máquinas de uso naval. Conforme o tipo de serviço e o regime de trabalho da embarcação, existe uma vasta gama de modelos com características apropriadas, conforme o uso. (Laser, trabalho comercial leve, pesado, médio-contínuo e contínuo)

VANTAGENS & DESVANTAGENS

<table>
<thead>
<tr>
<th>Vantagens</th>
<th>Desvantagens</th>
</tr>
</thead>
<tbody>
<tr>
<td>arranque rápido</td>
<td>limitação de potência</td>
</tr>
<tr>
<td>trabalho em rotações relativamente baixas</td>
<td>não utilização de combustíveis sólidos</td>
</tr>
<tr>
<td>pequeno tamanho</td>
<td>peso elevado para potência</td>
</tr>
<tr>
<td>fácil manutenção</td>
<td>elevado número de peças</td>
</tr>
<tr>
<td></td>
<td>baixa eficiência</td>
</tr>
</tbody>
</table>

DEFINIÇÕES

Ponto Morto Superior e Ponto Morto Inferior

Ponto Morto Superior (PMS) [TDC - Top Dead Center] e o Ponto Morto Inferior (PMI) [BDC - Bottom Dead Center], são nestas posições onde o êmbolo muda de sentido de movimento estando no seu máximo (PMS) ou no seu mínimo (PMI), conforme a Figura 1.
Cilindrada

É o volume total deslocado pelo pistão entre o P.M.I. e o P.M.S., multiplicado pelo número de cilindros do motor. É indicada em centímetros cúbicos (cm³) e tem a seguinte fórmula:

\[C = \left(\frac{\pi D^2}{4} \right) N_{\text{cilindros}} \text{ (em cm}^3\text{)} \]

Tomando como exemplo o motor de um Ómega GLS (GM). De seu catálogo têm-se os seguintes dados:

Motor Dianteiro Longitudinal M.P.F.I.
Número de Cilindros \(\rightarrow \) 04
Diâmetro cilindro \(\rightarrow \) 86,0 mm
Curso do pistão \(\rightarrow \) 86,0 mm
Taxa de Compressão \(\rightarrow \) 9,2:1

assim:

\[C = \left(\frac{\pi \cdot 86^2}{4} \cdot 8.6 \right) \cdot 4 = 1998,229 \text{ cm}^3 \]

conhecido, no mercado, como 2.0 ou 2,0 litros

Câmara de Compressão ou de Combustão, Volume Morto

É o espaço livre que fica acima do pistão quando este se encontra no P.M.S. Nela, a mistura ar/combustível do motor a gasolina, que entrou pela válvula de admissão, será comprimida e, após a faísca emitida pela vela, explodirá para que a expansão dos gases movimente o pistão e dê sequência ao funcionamento do motor.
Dependendo do grau de modernidade do motor, a câmara pode estar inserida no cabeçote ou na cabeça dos pistões – esse último mais comumente achados. Basicamente, o volume da câmara de combustão define a Taxa de Compressão do motor. Quanto menor for seu volume, maior será essa relação e, conseqüentemente, melhor o rendimento do motor. Todos os componentes que atuam em sua formação ou ao seu redor influenciam diretamente em sua eficiência: a posição das válvulas e o desenho dos dutos de admissão, por exemplo.

![Figura 2 – Câmara de Combustão](image)

Octanagem

A octanagem mede a capacidade da gasolina de resistir à detonação, ou a sua capacidade de resistir às exigências do motor sem entrar em auto-ignição antes do momento programado. A detonação, também conhecida como “batida de pino”, leva à perda de potência e pode causar sérios danos ao motor, dependendo de sua intensidade e persistência.

Um combustível de octanagem n é aquele que se comporta como se fosse uma mistura contendo n% de isooctano e (100-n)% de n.heptano. Por convenção, o isooctano puro tem octanagem 100 e o n.heptano puro tem octanagem zero. Hoje, alguns combustíveis aditivados possuem octanagem superior a escala posta, é uma nova tecnologia.

Para a Gasolina

No Brasil (com exceção do Rio Grande do Sul) é utilizada uma gasolina única no mundo, pois trata-se de uma mistura de 76% de gasolina e 24% de álcool etílico (etanol). O teor de álcool na gasolina é objeto de Lei Federal, cuja especificação final é de responsabilidade da Agência Nacional de Petróleo – ANP.

No Estado do Rio Grande do Sul, ao invés de álcool, utiliza-se o MTBE (metil-tercio-butil-etiíleno) como oxigenador, i.e., aditivo que contém oxigênio para aumentar a eficiência da combustão do hidrocarboneto Gasolina (C₈H₁₈). Atualmente, a gasolina que compõe esta mistura é produzida, em quase sua totalidade, pelas dez refinarias da Petrobras. O restante, por duas outras refinarias privadas: a de Manguinhos, no Rio de Janeiro, e
a de Ipiranga, no Rio Grande do Sul. Já o álcool é produzido a partir da cana-de-açúcar em diversas destilarias espalhadas pelo país. A composição final da chamada gasolina brasileira, ou seja, a mistura de gasolina e álcool é realizada pelas Companhias Distribuidoras (Esso, Shell, Texaco, etc...), responsáveis também pela comercialização final do produto junto aos postos de serviço.

Desde janeiro de 1992, a gasolina brasileira é isenta de chumbo. O chumbo era utilizado mundialmente para aumentar a octanagem da gasolina, mas, por questões ambientais, vem sendo gradualmente eliminado. Atualmente, estão à disposição dos consumidores brasileiros 03 tipos de gasolina: comum, comum aditivada e premium. Esta classificação é dada segundo a octanagem da gasolina.

A octanagem da gasolina pode ser avaliada por dois métodos distintos: método Motor (MON – Motor Octane Number) avalia a resistência da gasolina à detonação quando o motor está operando em condições mais severas – alta rotação e plena carga, como acontece em subidas com marcha reduzida e velocidade alta. O método Pesquisa (RON – Reserch Octane Number) avalia a resistência da gasolina à detonação quando o motor está operando em condições mais suaves – baixa rotação, como acontece em subidas com marcha alta. A octanagem das gasolinas brasileiras é equivalente à das gasolinas encontradas nos Estados Unidos e na Europa. É dada pela média entre os dois métodos, conhecida como Índice Antidetonante (MON + RON)/2.

As Gasolinas Comum e Comum-Aditivada têm octanagem de 86, indicadas para a maioria da frota de veículos circulante no Brasil. A Gasolina Premium possui maior octanagem, 91. Pode ser utilizada em qualquer veículo, mas não trará nenhum benefício se o motor não exigir este tipo de combustível (alta taxa de compressão, com monitoramento eletrônico, injeção multiponto e projetados para gasolinas de alta octanagem).

As Gasolinas Comum e Comum-Aditivadas possuem a mesma octanagem, diferindo-se entre si apenas pela presença de um aditivo, do tipo “detergente dispersante” que tem a função de manter limpo todo o sistema por onde passa a gasolina.

Para o Etanol

No Brasil, o etanol (C_2H_5OH) é utilizado de duas maneiras:

⇒ Como mistura na gasolina, na forma de 24% de etanol anidro, a 99,6º Gay-Lussac (GL) e 0,4% de água, formando uma mistura “gasohol” com o objetivo de aumentar a octanagem da gasolina;

⇒ Como etanol puro, na forma de etanol hidratado a 95,5º GL.

Nos outros países, as misturas de “gasohol” contêm tipicamente apenas 10% (ou menos) de etanol. O etanol é um excelente combustível automotivo: apresenta um Índice de Octanagem superior ao da gasolina e tem uma Pressão de Vapor inferior, resultando em menores emissões evaporativas. A combustão no ar é inferior a da gasolina, o que reduz o número e a severidade de fogo nos veículos. O etanol anidro tem poder calorífico inferior e superior de 21,2 e 23,4 MJ/l (megajoule por litro), respectivamente, contra 30,1 e 34,0 MJ/l da gasolina.

As principais propriedades da gasolina e do álcool estão indicadas abaixo:

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>GASOLINA</th>
<th>ETANOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor específico (kJ/kg)</td>
<td>34,900</td>
<td>26,700</td>
</tr>
<tr>
<td>N.º de Octano (RON/MON)</td>
<td>91/80</td>
<td>109/98</td>
</tr>
<tr>
<td>Calor latente de vaporização (kJ/kg)</td>
<td>376 ~ 502</td>
<td>903</td>
</tr>
<tr>
<td>Temperatura de ignição (°C)</td>
<td>220</td>
<td>420</td>
</tr>
<tr>
<td>Razão Estequiométrica Ar/Combustível</td>
<td>14,5</td>
<td>9</td>
</tr>
</tbody>
</table>

Fonte: Goldemberg & Macedo
Taxa de Compressão (Relação)

Relação matemática que indica quantas vezes a mistura ar/combustível ou simplesmente o ar aspirado (no caso dos diesel) para dentro dos cilindros pelo pistão é comprimido dentro da câmara de combustão antes que se inicie o processo de queima. Assim, um motor a gasolina que tenha especificada uma taxa de compressão de 8:1, por exemplo, indica que o volume aspirado para dentro do cilindro foi comprimido oito vezes antes que a centelha da vela iniciasse a combustão, Figura 3.

![Figura 3 – Definição de Taxa de Compressão](image)

Do ponto de vista termodinâmico, a taxa de compressão é diretamente responsável pelo rendimento térmico do motor. Assim, quanto maior a taxa de compressão, melhor será o aproveitamento energético que o motor estará fazendo do combustível consumido. Por esse motivo é que os motores diesel consomem menos que um similar a gasolina: funcionando com taxas de compressão altíssimas (17:1 nos turbodiesel e até 22:1 nos diesel aspirados), geram a mesma potência consumindo menos combustível.

Há limitações físicas e técnicas para a simples ampliação da taxa. No primeiro caso, ocorre a dificuldade de obtenção de câmaras de combustão minúsculas. Já o seguinte apresenta restrições quanto às propriedades do combustível, i.e., técnicas, o quanto cada um “tolera” de compressão antes de se auto-inflamar (octanagem).

A taxa de compressão corresponde à relação entre:

$$TC = \frac{\text{Cilindrada do Motor} + \text{Volume da Câmera de Combustão}}{\text{Volume da Câmera de Combustão}}$$

chamando de V a cilindrada do motor e v o volume da câmara de combustão (volume morto), tem-se:

$$TC = \frac{V + v}{v}$$

Tomando como exemplo o motor de um **Corsa Sedan GL** (GM), Figura 4. Do catálogo, obtém-se as seguintes informações:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Transversal M.P.F.I. Gasolina</td>
<td></td>
</tr>
<tr>
<td>Cilindrada</td>
<td>1.6 1600 cm³</td>
</tr>
<tr>
<td>Número de Cilindros</td>
<td>04</td>
</tr>
<tr>
<td>Diâmetro do Cilindro</td>
<td>79,0 mm</td>
</tr>
<tr>
<td>Curso do Pistão</td>
<td>81,5 mm</td>
</tr>
<tr>
<td>Taxa de Compressão</td>
<td>9,4:1</td>
</tr>
</tbody>
</table>
Como a Taxa de Compressão já é dada, pode-se calcular então o volume da câmara de combustão \(v \).

Figura 4 – O veículo do exemplo.

- para um motor de 04 cilindros \(\rightarrow 1600 \text{ cm}^3 \)
- para um cilindro apenas \(\rightarrow \frac{1600}{4} = 400 \text{ cm}^3 \)

- a Cilindrada \(\rightarrow V = \frac{\pi D^2}{4} \). \(\text{Curso} = \frac{\pi \cdot 7,9^2}{4} \cdot 8,15 = 399,486 \text{ cm}^3 \)
- para uma Taxa de Compressão de 9,4:1

- volume morto \(v \) \(\rightarrow \) \(v = \frac{V}{TC - 1} = \frac{399,486}{9,4 - 1} = 47,56 \text{ cm}^3 \)

Pode-se então calcular a altura deixada no cilindro para a abertura das válvulas:

\[v = \frac{\pi \cdot D^2}{4} \cdot h \]
\[h = \frac{4 \cdot v}{\pi \cdot D^2} = \frac{4 \cdot 47,56}{\pi \cdot 7,9^2} = 0,97 \text{ cm} \]
\[h = 9,7 \text{ mm} \]

Com isso pode-se concluir que a Taxa de Compressão é uma propriedade inerente ao motor (bloco, cabeçote, pistões) e não ao combustível utilizado no mesmo.

Não se altera a Taxa de Compressão de um motor apenas modificando o tipo de combustível consumido.

Como exemplo, imagine que a altura \((h) \) do cilindro que compõe o volume morto (câmara de combustão) tenha sido rebaixada de 0,6 mm. Qual será a nova Taxa de Compressão deste motor?

\[v = \frac{\pi \cdot D^2}{4} \cdot h = \frac{\pi \cdot 7,9^2}{4} \cdot (0,97 - 0,06) = 44,605 \text{ cm}^3 \]
Auto-Ignição

Em razão das altas temperaturas na câmara de combustão ou octanagem incorreta da gasolina para a taxa de compressão do motor, algumas vezes o efeito auto-ignição pode ocorrer. Pontos quentes no interior da câmara passam a fazer o papel da vela de ignição, incandescendo a mistura ar/combustível antes mesmo de a vela de ignição iniciar o processo através da centelha elétrica. Uma vela com grau térmico muito alto para a situação em que o motor está sendo utilizado pode também ser o motivo da auto-ignição.

Muito prejudicial ao funcionamento do motor, fazendo com que o mesmo perca potência e corra o risco de um superaquecimento ainda maior, a auto-ignição pode levar à destruição da câmara de combustão e, em casos extremos, furos na cabeça dos pistões ou mesmo sua fusão com o cilindro (Figura 5). Seus efeitos devastadores são idênticos aos do motor com ponto de ignição muito adiantado, o que pode acabar provocando detonações (Figura 6).

De uma maneira geral, o maior responsável pela auto-ignição é a carbonização da cabeça dos pistões e das câmaras de combustão em motores com alta compressão, fato que aumenta ainda mais a taxa de compressão por reduzir o volume da câmara de combustão, ou que estejam trabalhando com o avanço da ignição adiantado com relação ao ideal para aquele motor.

\[
TC = \frac{V + v}{v} = \frac{399,486 + 44,605}{44,605} = 9,956
\]

Assim, com a diminuição de 0,6 mm a Taxa de Compressão aumentará de 9,4:1 para aproximadamente 10,0:1.

Figura 5 – Danificação por Pré-Ignição

- Zona dos anéis e cabeça do pistão parcialmente destruídas.
- Furo no topo do pistão.

Aspecto
Avanço

Nome empregado mais comumente para designar o quanto a faísca da vela deverá ser avançada, com relação ao P.M.S. do pistão para iniciar o processo de combustão. Faz-se o avanço para se obter a máxima pressão sobre o pistão quando o mesmo atinge o P.M.S., melhorando a performance do motor.

Num automóvel, o avanço pode ser de 03 tipos: a vácuo, centrífugo ou eletrônico. Os dois primeiros, absolutamente mecânicos, atuam diretamente sobre o distribuidor (Figura 7), sendo passíveis de erro operacional.

O terceiro tipo de avanço, o eletrônico, existe na memória do sistema de comando da ignição ou, o que é bem mais moderno e comum atualmente, na central eletrônica que comanda a injeção e ignição, simultaneamente.
Outras Definições e Nomenclatura

A nomenclatura utilizada pelos fabricantes de motores, normalmente encontrada na documentação técnica relacionada, obedece a notação adotada pela norma DIN 1940. Existem normas americanas, derivadas das normas DIN, que adotam notações ligeiramente diferenciadas, porém com os mesmos significados.

<table>
<thead>
<tr>
<th>Notação</th>
<th>Nomenclatura</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Diâmetro do Cilindro</td>
<td>Diâmetro interno do Cilindro.</td>
</tr>
<tr>
<td>s</td>
<td>Curso do Pistão</td>
<td>Distância percorrida pelo pistão entre os extremos do cilindro, definidos como Ponto Morto Superior (PMS) e Ponto Morto Inferior (PMI).</td>
</tr>
<tr>
<td>s/D</td>
<td>Curso/Diâmetro</td>
<td>Relação entre o curso e o diâmetro do pistão. (Os motores cuja relação curso/diâmetro = 1 são denominados motores quadrados.)</td>
</tr>
<tr>
<td>n</td>
<td>Rotação</td>
<td>Número de revoluções por minuto da árvore de manivelas.</td>
</tr>
<tr>
<td>c_m</td>
<td>Velocidade</td>
<td>Velocidade média do Pistão = $2 \frac{s \cdot n}{60} = \frac{s \cdot n}{30}$</td>
</tr>
<tr>
<td>A</td>
<td>Area do Pistão</td>
<td>Superfície eficaz do Pistão = $\pi \frac{D^2}{4}$</td>
</tr>
<tr>
<td>P_e</td>
<td>Potência Útil</td>
<td>É a potência útil gerada pelo motor, para sua operação e para seus equipamentos auxiliares (assim como bombas de combustível e de água, ventilador, compressor, etc.)</td>
</tr>
<tr>
<td>z</td>
<td>Número de Cilindros</td>
<td>Quantidade de cilindros de dispõe o motor.</td>
</tr>
<tr>
<td>V_h</td>
<td>Volume do Cilindro</td>
<td>Volume do cilindro = $A \cdot s$</td>
</tr>
<tr>
<td>V_c</td>
<td>Volume da Câmara</td>
<td>Volume da câmara de compressão.</td>
</tr>
<tr>
<td>V</td>
<td>Volume de Combustão</td>
<td>Volume total de um cilindro = $V_h + V_c$</td>
</tr>
<tr>
<td>VH</td>
<td>Cilindrada Total</td>
<td>Volume total de todos os cilindros do motor = $z \cdot V_h$</td>
</tr>
<tr>
<td>ϵ</td>
<td>Relação de Compressão</td>
<td>Também denominada de razão ou taxa de compressão, é a relação entre o volume total do cilindro, ao iniciar-se a compressão, e o volume no fim da compressão, constitui uma relação significativa para os diversos ciclos dos motores de combustão interna. Pode ser expressa por $\left(\frac{V_h + V_c}{V_c}\right)$ (é > 1).</td>
</tr>
<tr>
<td>P_i</td>
<td>Potência Indicada</td>
<td>É a potência dentro dos cilindros. Abreviadamente denominada de IHP (Indicated Horsepower), consiste na soma das potências efetiva e de atrito nas mesmas condições de ensaio.</td>
</tr>
<tr>
<td>P_l</td>
<td>Potência Dissipada</td>
<td>Potência dissipada sob carga, inclusive engrenagens internas.</td>
</tr>
<tr>
<td>P_o</td>
<td>Dissipação</td>
<td>Dissipação de potência pela carga.</td>
</tr>
<tr>
<td>P_r</td>
<td>Consumo de Potência</td>
<td>Consumo de potência por atrito, bem como do equipamento auxiliar para funcionamento do motor, à parte a carga. $P_r = P_i - P_e - P_l - P_o$.</td>
</tr>
<tr>
<td>P_t</td>
<td>Potência Teórica</td>
<td>Potência teórica, calculada por comparação, de máquina ideal. Hipóteses para este cálculo: ausência de gases residuais, queima completa, paredes isolantes, sem perdas hidrodinâmicas, gases reais.</td>
</tr>
</tbody>
</table>
Pressão Média Efetiva

É a pressão hipotética constante que seria necessária no interior do cilindro, durante o curso de expansão, para desenvolver uma potência igual à potência no eixo.

Pressão Média Nominal

É a pressão hipotética constante que seria necessária no interior do cilindro, durante o curso de expansão, para desenvolver uma potência igual à potência nominal.

Pressão Média de Atrito

É a pressão hipotética constante que seria necessária no interior do cilindro, durante o curso de expansão, para desenvolver uma potência igual à potência de atrito.

Consumo

Consumo horário de combustível.

Consumo Específico

Consumo específico de combustível = \(B / P \); com o índice \(e \) refere-se à potência efetiva e com o índice \(i \) refere-se à potência nominal.

Rendimento Mecânico

É a razão entre a potência medida no eixo e a potência total desenvolvida pelo motor, ou seja: \(\eta_m = P_e / P_i = (P_e + P_r) / (P_e + P_r + P_a + P_l + P_{sp}) \) ou então \(\eta_m = P_e / (P_e + P_r + P_a + P_l + P_{sp}) \).

Rendimento Útil

Ou rendimento econômico é o produto do rendimento nominal pelo rendimento mecânico = \(\eta_i \cdot \eta_m \).

Rendimento Indicado

É o rendimento nominal. Relação entre a potência indicada e a potência total desenvolvida pelo motor.

Rendimento Teórico

É o rendimento calculado do motor ideal.

Eficiência

É a relação entre os rendimentos nominal e teórico; \(\eta_e = \eta_i / \eta_v \).

Rendimento Volumétrico

É a relação entre as massas de ar efetivamente aspirada e a teórica.

Princípio de Funcionamento dos Motores Alternativos

O Ciclo mecânico é o mesmo em qualquer motor alternativo.

1. Introduz-se o combustível no cilindro;
2. Comprime-se o combustível, consumindo trabalho (deve ser fornecido);
3. Queima-se o mesmo;
4. Ocorre a expansão dos gases resultantes da combustão, gerando trabalho;
5. EXPULSÃO DOS GASES.

Nos motores a pistão, este ciclo pode completar-se de duas maneiras:

- ciclo de trabalho a quatro tempos;
- ciclo de trabalho a dois tempos.

Motor a Quatro Tempos

O ciclo se completa a cada quatro cursos do êmbolo, de onde vem a sua denominação.
Um ciclo de trabalho estende-se por duas rotações da árvore de manivelas, ou seja, quatro cursos do pistão.

No primeiro tempo, com o pistão em movimento descendente, dá-se a admissão, que se verifica, na maioria dos casos, por aspiração automática da mistura ar-combustível (nos motores Otto), ou apenas ar (motor Diesel). Na maioria dos motores Diesel modernos, uma ventoinha empurra a carga para o cilindro (turbocompressão).

No segundo tempo, ocorre a compressão, com o pistão em movimento ascendente. Pouco antes do pistão completar o curso, ocorre a ignição por meio de dispositivo adequado (no motor Otto), ou a auto-ignição (no motor Diesel).

No Terceiro tempo, com o pistão em movimento descendente, temos a ignição, com a expansão dos gases e transferência de energia ao pistão (tempo motor).

No quarto tempo, o pistão em movimento ascendente, empurra os gases de escape para a atmosfera.

Durante os quatro tempos – ou duas rotações – transmitiu-se trabalho ao pistão só uma vez. Para fazer com que as válvulas de admissão e escapamento funcionem corretamente, abrindo e fechando as passagens nos momentos exatos, a árvore de comando de válvulas (ou eixo de cames) gira a meia rotação do motor, completando uma volta a cada ciclo de quatro tempos.
Os quatro tempos

1º TEMPO
Curso de Admissão
Estando o pistão no PMS, o mesmo começa a descer estando aberta a válvula de admissão (VA) e fechada a válvula de descarga (VD). O êmbolo, ao descer gera um vácuo no interior do cilindro, aspirando a mistura ar-combustível (Ciclo Otto) ou somente ar (Ciclo Diesel) até o PMI, quando a VA se fecha, cumprindo-se meia volta do virabrequim (180º).

2º TEMPO
Curso de Compressão
Estando VA e VD fechadas, a medida que o pistão desloca-se para o PMS, o mesmo comprime o conteúdo do cilindro, aumentando a sua temperatura e pressão interna, figura 03. O virabrequim gira outros 180º, completando o primeiro giro (volta completa - 360º).

3º TEMPO
Curso de Combustão e Expansão
Nesta fase produz-se a energia que será transformada em trabalho mecânico. Pouco antes do pistão atingir o PMS, a mistura ar-combustível é queimada. A energia liberada nesta combustão dá origem a uma força no êmbolo, deslocando-o do PMI ao PMI. Esta força é transmitida pelo êmbolo, através da biela, ao virabrequim girando-o (executa meia volta - 180º).

4º TEMPO
Curso de Escape
Com a VA fechada e a VD aberta, o êmbolo, ao deslocar-se para o PMS, esfrega os produtos da combustão. O virabrequim executa outra meia volta - 180º, completando o ciclo (720º).

Figura 8 - Os 4 tempos de um motor de combustão.
É importante salientar que somente no curso de combustão se produz energia mecânica, os outros três tempos são passivos, ou seja, absorbem energia.

Motor Dois Tempos

Os motores deste tipo combinam em dois cursos do êmbolo as funções dos motores de quatro tempos, sendo assim, há um curso motor para cada volta do virabrequim. Normalmente estes motores não têm válvulas, eliminando-se o uso de tuchos, hastes, etc. O carter, que possui dimensões reduzidas, recebe a mistura ar-combustível e o óleo de lubrificação. Deve ser cuidadosamente fechado pois nele se dá a pré-compressão da mistura.

1º Tempo - Curso de Admissão e Compressão

O êmbolo dirige-se ao PMS, comprimindo a mistura ar-combustível. As janelas de escape e carga são fechadas, abrindo-se a janela de admissão. Com o movimento do êmbolo, gera-se uma pressão baixa dentro do carter e assim, por diferença de pressão admite-se uma nova mistura ar-combustível-óleo lubrificante, que será utilizado no próximo ciclo. O virabrequim dá meia volta, 180 graus, fechando o ciclo. Pouco antes de atingir o PMS, dá-se a centelha, provocando a combustão da mistura, gerando uma força sobre o êmbolo. Inicia-se então o próximo ciclo.

2º Tempo - Combustão e Escape

É o curso de trabalho. No PMS, dado início à combustão por meio de uma centelha (spark), o êmbolo é forçado até o PMI. Durante o curso, o êmbolo passa na janela de descarga dando vazão aos gases da combustão. Ao mesmo tempo o êmbolo abre a janela de carga permitindo que uma nova mistura ar-
combustível entre no cilindro preparando-o para o novo ciclo e forçando os gases provenientes da combustão para fora (lavagem). O virabrequim, neste primeiro tempo, dá meia volta, 180 graus.

![Figura 10 - Ciclo de um Motor 2 Tempos](image)

MOTOR WANKEL

Esse motor, de um modo geral, apresenta as seguintes vantagens relativamente aos congêneres alternativos:
1. Eliminação dos mecanismos biela-manivela com redução dos problemas de compensação de forças e momentos, bem como vibratórios;
2. Menor número de peças móveis, o que poderá ocasionar construção e manutenção mais simples e de menor custo;
3. Maior concentração de potência, logo menor volume e peso.

Por outro lado, o motor apresenta problemas, em parte já sanados e em parte ainda para serem resolvidos. Entre esses problemas, destacamos:

1. Alta rotação: o primeiro protótipo experimental girava a 17.000 rpm. Atualmente essa rotação encontra-se na faixa das 4.000 rpm.
2. Problemas de vedação entre pistão e cilindro;
3. Problemas de lubrificação, sendo que estes dois últimos já foram sanados.

O motor Wankel, consta apenas de cilindro, de duas partes rotativas, árvore com respectivo excêntrico, volantes, massas de compensação e o pistão rotativo, que gira engrenado a um pinhão fixo.

Desde os primeiros dias da invenção do motor a gasolina, milhares já foram construídos baseados em princípios e ciclos diferentes dos que caracterizaram os motores clássicos de dois ou quatro tempos. Entre
eles, um tipo desenvolveu-se satisfatoriamente, após anos de estudos e experiências. Trata-se do motor de pistão rotativo ou, como é atualmente conhecido, motor Wankel.

O primeiro automóvel produzido em série a utilizar um desses motores foi o carro esporte NSU de dois lugares, que atraiu muito interesse nos círculos automobilísticos por seu tamanho reduzido, suavidade e a espantosa força desenvolvida por seu motor com mio litro de capacidade - embora isto não seja comparável com o meio litro de um motor de pistão convencional, conforme veremos.

Os princípios essenciais do motor Wankel não são fáceis de descrever, mas antes de mais nada precisamos contar sua história.

Em 1951, Felix Wankel (Figura 11), encarregado do Departamento de Pesquisas Técnicas em Lindau, fez os primeiros contatos com os engenheiros da NSU para estudar os problemas da vedação de espaços irregulares. Esses estudos resultaram na descoberta de que um motor mais ou menos triangular (mas com lados convexos), girando em uma câmara que tivesse, aproximadamente, a forma de um oito (é claro que as descrições são matematicamente muito inexatas), poderia desenvolver um verdadeiro ciclo de quatro tempos.

A primeira aplicação desse princípio foi na forma de um compressor para o motor NSU de 50cc, com dois tempos, que iria estabelecer novos recordes mundiais em Utah, em 1956. O compressor rotativo capacitou este pequeno motor a desenvolver 260HP por litro. Isto deu ao pequenino carro a velocidade de quase 160km/h.

Em 1958, Wankel fez um acordo com a companhia norte-americana Curtiss-Wright para que unissem seus esforços nas tentativas de fabricação de um grande motor baseado nestes princípios. Mais tarde começaram os testes com carros dotados de motores Wankel, diferentes uns dos outros. Dessa época até 1963, o motor foi gradualmente tomando forma definitiva e então adaptado a um pequeno NSU de dois lugares, apresentado no Salão do Automóvel em Frankfurt, no outono de 1963. A partir daí, foi concedida licença, entre outras, para a Mazda, no Japão.
Talvez o melhor exemplo seja o magnífico NSU RO 80, com dois rotores, que começou a ser produzido em série em outubro de 1967, sendo que a versão com a direção do lado direito foi introduzida no mercado inglês em fins de 1968.

Veremos agora como o motor funciona. Ele consiste essencialmente em uma câmara cujo formato interno se aproxima da forma de um oito. Dentro dela, um rotor mais ou menos triangular - o pistão - gira excentricamente com relação ao virabrequim ou eixo principal do motor. As formas destes dois elementos são tais que enquanto os cantos do pistão estão sempre equidistantes das paredes da câmara - e muito próximos a elas, formando uma vedação - eles sucessivamente aumentam e diminuem o espaço entre os lados convexos do triângulo - o rotor - e as paredes da câmara.

Assim, se uma mistura for injetada numa das câmaras, quando está aumentando de tamanho, será comprimida na redução subseqüente de volume, enquanto o rotor, ou pistão, gira. Deste modo, o ciclo clássico de quatro tempos - injeção, compressão, explosão e exaustão - é produzido e, além disso, as três faces do rotor estão em três fases diferentes do ciclo, ao mesmo tempo.
As vantagens do motor Wankel sobre os motores de pistão convencional são muitas. Em primeiro lugar, não existem vibrações devido ao fato de que só há um movimento rotativo, e isso significa ainda menor desgaste e vida mais longa.

O motor Wankel não tem nada de complicado: ao contrário, tem poucos componentes, é bem menor e consome bem menos do que os outros motores.

Entre suas desvantagens incluem-se uma curva de potência não muito elástica e problemas em manter uma perfeita vedação entre os cantos do rotor e as paredes da câmara, o que causa algumas dificuldades devido ao rigor das especificações do projeto e às tolerâncias mínimas na produção.
No diagrama, a face CA do rotor pode ser vista nas posições 1 e 4, passando gradualmente através dos sucessivos estágios da primeira fase - injeção, na qual a mistura explosiva de ar e gasolina é introduzida na câmara.

Voltemos à figura e vejamos o lado AB. Ele agora começa a fase que AC tinha atingido na figura IV - fase de compressão. Esta fase pode ser seguida nas posições 5, 6 e 7.

Assim que este ponto é atingido, a única vela de ignição produz centelha, e os gases de explosão podem ser vistos na posição 8 produzindo a força para mover o rotor.

Nas posições 9 e 10, pode-se ver o lado BC nas fases de explosão e expansão. Nas posições seguintes (11 e 12), ele expulsa a mistura queimada para fora da câmara de exaustão, caracterizando a etapa de exaustão do ciclo.

Assim, três fases do ciclo realizaram-se sucessivamente em três lados do rotor, afastados 120° uns dos outros. Isto explica como um motor Wankel de 50cc pode facilmente desenvolver 50HP. Os 500cc referem-se ao volume entre a câmara e um lado do rotor; como vimos, isto é multiplicado por três, pelos três lados do rotor.

Em 1995 a Mazda lança o Mazda RX-7, com as seguintes características:
Figura 19 - Mazda RX-7

DESCRIÇÃO: WANKEL, MAZDA 13B, 1.3, 2 cilindros-rotores em linha, dois turbocompressores e intercoolers, injeção multiponto, gasolina

CILINDRADA: 1.308 cm³
POTÊNCIA: 255 cv a 6.500 rpm
POTÊNCIA ESPECÍFICA: 196,1 cv/l
TORQUE: 30 kgfm a 5.000 rpm

COMPRIMENTO: 4.300 mm
LARGURA: 1.750 mm
ALTURA: 1.230 mm
PESO: 1.240 kg
TRACÇÃO: Traseira
CÂMBIO: Manual de 5 marchas
CONFIGURAÇÃO: Cupê
FREIOS: Discos ventilados nas quatro rodas

VELOCIDADE MÁXIMA: 250 km/h
ACELERAÇÃO (0-100 KM/H): 5,3 segundos

Existindo ainda o protótipo de um novo automóvel, o **Mazda RX 2000 Evolv**.

Figura 20 - Mazda RX 2000 Evolv

DESCRIÇÃO: WANKEL, MAZDA 13B EVOLUTION, 1.3, 2 cilindros-rotores em linha, dois turbocompressores e intercoolers, injeção multiponto, gasolina
CILINDRADA: 1.308 cm³
POTÊNCIA: 280 cv a 9.000 rpm
POTÊNCIA ESPECÍFICA: 215,3 cv/l
TORQUE: 21,3 kgf.m a 8.000 rpm

COMPRIMENTO: 4.285 mm
LARGURA: 1.760 mm
ALTURA: 1.350 mm
PESO: Não disponível
TRAÇÃO: Traseira
CONFIGURAÇÃO: Cupê
FREIOS: Discos ventilados nas quatro rodas
VELOCIDADE MÁXIMA: Não disponível
ACELERAÇÃO (0-100 km/h): Não disponível

MOTOR QUASITURBINE

Muita potência, torque uniforme, baixa vibração, pouco consumo, peso reduzido. Parece plataforma eleitoral, mas são as qualidades proclamadas pelos inventores do Quasiturbine, um motor rotativo com características inéditas que está sendo desenvolvido no Canadá.

Criado por um grupo encabeçado pelo físico Gilles Saint-Hilaire, o Quasiturbine recebeu este estranho nome por funcionar de forma semelhante a uma turbina. As turbinas geram energia de forma contínua, sem interrupção. Em cada rotação, ou seja, 360 graus, o QT gera energia durante 328 graus. Para comparar, num motor normal, de quatro tempos, cada pistão gera energia apenas uma vez a cada duas rotações e, assim mesmo, no máximo por 90 graus.

Por ser um motor rotativo, é inevitável comparar o QT com o Wankel, o único desse tipo que chegou a ser usado em escala comercial com relativo sucesso, principalmente pela Mazda. O Wankel tem um desenho bem mais complexo: a cada giro de seu rotor, por exemplo, o eixo de transmissão vira três vezes. E, a cada volta do eixo, há uma explosão, contra quatro do QT que, por isso, oferece uma maior uniformidade de torque. E, embora menor do que os motores a pistão, o Wankel também tem um período "morte": a cada volta do rotor, há três interrupções de 30 graus na geração de energia.

Como não tem virabrequim, o QT elimina, em boa parte, o problema das vibrações. E, sem necessitar de válvulas de admissão ou escapamento, tem um número de peças móveis bastante reduzido. Como o torque é quase constante, ele dispensa o uso de volante para armazenagem de energia, o que contribui para a rapidez na aceleração e reduz seu peso. Outra característica importante é não necessitar de um cártier para óleo, o que possibilita sua montagem em qualquer posição.

Como funciona

O Quasiturbine tem quatro "carruagens", ligadas numa cadeia por um rotor flexível, que percorrem o contorno interior de um retângulo de cantos arredondados, chamado pelos fabricantes de "ringue de patinação" (Figura 21). As carruagens funcionam como elementos de vedação para as câmaras formadas entre o rotor e o contorno do compartimento interno. Essa cadeia se posiciona, alternadamente, como um retângulo ou um losango, criando câmaras de volume variável entre si e o perímetro do “ringue”.

53
A entrada da mistura ar-combustível se dá por uma janela, da mesma forma que o escapamento (essas aberturas podem ficar no contorno externo ou nas coberturas laterais). Há uma vela, que só é acionada na partida: depois de entrar em funcionamento, a ignição é contínua como numa turbina, sendo transferida por fendas ou orifícios. A alimentação pode ser feita por um carburador simples ou por injeção contínua (Figura 22).

Por suas características, o QT funciona em baixa rotação (3.000 rpm parece um limite razoável). Seus criadores dizem que, para uma mesma potência, ele ocupa 30% menos espaço do que um motor a pistão, economizando ainda mais em peso (Figura 23 e Figura 24).

O QT pode usar vários tipos de combustível, variando do diesel ao hidrogênio. Pode funcionar, também, a vapor ou ar comprimido ou ser usado como compressor. Como tem o centro vazio, ele permite a montagem interna de um gerador elétrico, o que o torna muito apropriado para o uso em aplicações híbridas. Se alimentado por um compressor, ele pode ser convertido de quatro para dois tempos, praticamente duplicando sua potência específica.
VEÍCULOS HÍBRIDOS

Um veículo híbrido é um veículo que utiliza duas fontes de energia para se movimentar. Uma baseada em um motor elétrico e outra baseada em um motor térmico qualquer (turbina a gás, motor diesel, gasolina, Stirling e todos os modelos existentes no mercado).
O modo que armazena a energia elétrica é também uma das suas características principais e uma das que mais está se trabalhando nos últimos anos. Devido ao estado da tecnologia atual, é complicado armazenar grandes quantidades de energia elétrica, sendo que, devido a isso, a fonte principal de energia será o combustível que alimenta o motor térmico. O combustível armazena grande quantidade de energia em um volume pequeno, a qual é liberada pela combustão.

O veículo híbrido possui algumas vantagens interessantes, vindas da origem elétrica do movimento, como por exemplo:

- Frenagem regenerativa, que contribui para minimizar a energia perdida nas frenagens habituais na condução do veículo;
- Motor elétrico é mais pequeno, de acordo com a carga média conduzida, já que o este é o que suporta os picos de carga como nas acelerações ou simplesmente no percurso normal;
- Grande diminuição do consumo, que pode chegar a 50% do consumo normal de um veículo;
- Grande diminuição das emissões, já que o motor térmico trabalha em regimes altamente eficientes e consome menos combustível;
- Emprego de combustíveis alternativos, reduzindo a dependência dos combustíveis fósseis devido a grande variedade de motores térmicos que se pode usar.

Seleção dos Componentes

A seleção dos componentes de um veículo híbrido é feita sobre todas as opções viáveis, atendendo a configuração escolhida para o automóvel. Deve-se definir as características, dando-se prioridade para a potência ou a economia, na hora de escolher a configuração e os componentes do veículo.

I – O motor elétrico

O motor elétrico e seu mecanismo de controle é uma das peças fundamentais de qualquer veículo híbrido. Deve ser capaz de gerar eletricidade ou de gerar potência mecânica de maneira que se ajuste rapidamente as necessidades do veículo de forma que sua eficiência seja a mais alta possível.

As duas possibilidades existentes para motores elétricos são: corrente contínua ou corrente alternada.

a) Motores de Corrente Contínua. São os motores utilizados no passado para as aplicações de velocidade variável em motores elétricos. No entanto, graças aos avanços da eletrônica de potência hoje pode-se utilizar os motores de corrente alternada. O controle dos motores de corrente contínua é feito de forma fácil e simples e seus controles são muito baratos. Mas por um outro lado, os motores de corrente contínua são grandes e pesados.

b) Motores de Corrente Alternada. Este tipo de motor necessita para sua utilização e controle em velocidades variáveis, instrumentos de eletrônica de potência que podem variar a frequência da
energia que chega ao motor. Devido a isso, os controladores desse tipo de motor, são em geral mais caros que os de corrente contínua mas esse tipo de motor possui a vantagem de ser pequeno e rápido.

2 – Armazenamento da Energia Elétrica

a) Baterias. As baterias constituem o sistema clássico de armazenamento de energia. Nelas ocorrem reações químicas reversíveis.

Vantagens: A tecnologia de fabricação das baterias é uma tecnologia madura, em comparação com as outras opções.

Desvantagens: As baterias formadas por novas ligas são extremamente caras e completamente inviáveis para sua comercialização na atualidade. E ainda, a maioria das baterias possui um ciclo de vida muito mais curto que o tipo de veículo que necessitamos, o que necessitaria de uma substituição muito onerosa.

b) Volantes de Inércia. Os volantes de inércia são discos com uma alta massa específica nos quais armazena-se energia cinética em forma de rotação. Funcionam como um rotor de um motor gerando eletricidade pelo uso da energia cinética de rotação. Os discos armazenam energia em forma de energia cinética quando se aumenta a velocidade de giro dos mesmos.

Vantagens: Essa forma de armazenar energia é muito eficiente. Além disso é capaz de entregar a energia que possui armazenada de forma mais rápida que as baterias.

Desvantagens: Atualmente esses tipos de sistemas têm todavia uma baixa energia específica e existem problemas de segurança devido a possibilidade de que se perca o controle sobre o disco que permanece girando a altas rotações. Outros tipos de problemas gerados são os relativos aos efeitos giroscópicos do disco que podem desestabilizar o veículo.

c) Ultracondensadores. Armazenar a energia por meio de condensadores permite uma descarga muito rápida da mesma, que é o ideal para as mudanças bruscas de velocidade.

Vantagens: Os condensadores não possuem partes móveis e, por isso, tem uma grande vida. Além disso, têm a capacidade de armazenar energia rapidamente, o que faz que sejam o sistema ideal de armazenamento de energia durante as frenagens bruscas e acelerações.

Desvantagens: Os condensadores tem muito pouca capacidade e a tecnologia para grandes condensadores se encontra muito pouco avançada.

3 – Os motores Térmicos

O motor térmico de um veículo híbrido converte a energia química liberada na combustão de um combustível em energia cinética que aproveitamos para mover as rodas ou para gerar energia elétrica.

Honda Insight

Honda Insight Web Site (www.hondainsight.com)

A Honda possui uma história de produzir novas tecnologias, eficientes e de baixas emissões poluidoras. Pode-se recordar o Civic CVCC 1973, que aprovou as normas de emissão da Califórnia, ou o 1,3 Civic CRX 1984, que obteve impressionantes resultados com um motor a gasolina.

Com o Insight, a Honda se adianta em produzir um veículo com baixíssimas emissões, ótima eficiência de combustão e média potência.
Dados do veículo:

<table>
<thead>
<tr>
<th>Tipo de veículo</th>
<th>Coupe - Tração Dianteira, 3 portas, 2 pessoas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo (cidade/estrada)</td>
<td>25,93 / 29,76 km/litro</td>
</tr>
<tr>
<td>Aceleração (0 a 95 km.h)</td>
<td>11 seg</td>
</tr>
<tr>
<td>Transmissão</td>
<td>Manual de 5 velocidades</td>
</tr>
<tr>
<td>Construção</td>
<td>Compostos de Alumínio</td>
</tr>
<tr>
<td>Peso Total</td>
<td>856 kg</td>
</tr>
<tr>
<td>Preço com Ar-Condicionado</td>
<td>US$ 20.080</td>
</tr>
</tbody>
</table>

Em resumo, o Insight é um veículo híbrido (gasolina-elétrico) com emissões ultra baixas, com um rendimento altíssimo. Está equipado com um motor de 1.0 litros e um motor elétrico compacto. O automóvel não dever ser ligado ao resto dos automóveis elétricos, porque as baterias são recarregadas ao se frear e pelo motor a gasolina. Sua autonomia pode chegar a 965km com um tanque.

FUEL CELL – CÉLULA DE COMBUSTÍVEL

[14]

Nos últimos seis anos, a DaimlerChrysler AG investiu pesado para possibilitar que a célula de combustível se tornasse custo/compatível para produção em massa. Vários obstáculos tiveram que ser ultrapassados como barreiras tecnológicas, financeiras e, a mais importante delas, a barreira psicológica do consumidor.

Já, há muito tempo que martela-se na tecla dos híbridos, dos EV (veículos elétricos) e fuel cell. A patente, registrada em 1998, pela Ballard Power Systems (canadense) foi alardeada nos quatro cantos do planeta. A partir dali, seria possível reformar (extraír as moléculas de hidrogênio dos combustíveis e canalizar somente os elétrons) em linha.
Figura 27 – Metanol, a vida dos novos propulsores Fuel Cell - abastecimento convencional nos postos de serviço.

Uma sequência lógica comum: o carro é abastecido no posto com gasolina, álcool, metanol ou diesel (Figura 27), o combustível é admitido na célula, os elétrons são canalizados e, acumulados, provocam uma descarga elétrica que alimenta o ou os motores do automóvel. Naquele momento, qualquer dúvida existente quanto às possibilidades comerciais da célula de combustível deixaram de existir. Todos acreditam que a célula de combustível é o futuro mais provável.

Credo tanto quanto todos os outros fabricantes de automóveis, a DaimlerChrysler AG, que tinha no Classe A uma mula (protótipo em fase de desenvolvimento) perfeita para a adaptação deste tipo de trem de força, concentrou investimentos no desenvolvimento desta tecnologia, atualmente, seis anos mais tarde, somando mais de dois bilhões de marcos alemães (1,3 bilhões de dólares).

A evolução começou a transparecer quando surgiram os conceitos NECAR (Novo Carro Elétrico) 3 e 4. A quantidade de platina necessária à produção da peça chave do reformador, a PEM (membrana que permite a troca de elétrons), caiu drasticamente, permitindo que um conjunto (PEM) capaz de produzir 35 kW (aproximadamente 50 Hp) pudesse ser construído por apenas 3 mil dólares. Nada mau se comparado aos 35-40 mil dólares necessários até aquela data.

Porém, a célula de combustível não apresenta dificuldades apenas quanto ao custo das PEM, a reformação do combustível deve acontecer a uma temperatura muito baixa, de forma a otimizar ao máximo o processo de obtenção de energia elétrica. Esse obstáculo, antes muito mais expressivo, vem sendo transposto e a temperatura de trabalho subindo – hoje em menos 20 graus centígrados – minimizando o peso do próprio veículo, outra grande barreira.

Reduzir o peso dos conjuntos propulsores, tem sido, ultimamente, o maior desafio dos pesquisadores e fabricantes. A questão se compõe de: obter uma relação peso/potência favorável e evitar ao máximo a redução de peso calculada em materiais super caros, como: titânio, magnésio, compostos de alumínio, cerâmicas e polímeros como o nylon Zytel da Dupon, altamente resistente e quase indeformável – utilizado na grande maioria dos coletores de admissão dos motores novos.

Então, chegou o NECAR 5 (Figura 28), como o próprio nome diz: a quinta versão NECAR. Nesta versão, a novidade é que todo o trem de força pode se alojar sob o assoalho (sanduíche) do Classe A, permitindo que todo o espaço, tanto para os passageiros quanto para bagagem pudesse ser mantido. Outra vantagem sobre a versão 4, é que, agora, o conjunto propulsor pesa menos 35% e é mais eficiente 50% - uma reviravolta na relação peso/potência.
Nas condições atuais, afirmam os responsáveis pelo projeto e o próprio Jürgen E. Schrempp – CEO da DaimlerChrysler AG –, o NECAR 5 poderá rodar entre 500-600 km com os 50 litros de metanol que podem ser armazenados num tanque comum do Classe A.

A empresa promete uma versão fuel cell para o uso urbano em coletivos para 2004.
A Ford também já pôs as mangas de fora e apresentou uma versão pronta para a produção do Focus FCV. Embora similar ao conceito da arquí rival de dupla nacionalidade, o Focus é uma solução imediata, porém, com maiores limitações quanto ao desempenho e consumo. A Ford planeja a comercialização do seu primeiro fuel cell também para 2004.
CICLOS DE POTÊNCIA

Ciclo de Carnot

Para entender melhor, colocaremos aqui, de forma resumida o ciclo desenvolvido por um motor térmico, teórico, chamado Ciclo de Carnot. Sadi Carnot (1796-1832) publicou em 1823 uma brochura intitulada “Reflexões sobre a potência motriz do fogo”. Enunciava aí um ciclo ideal que, partindo da transformação de gases perfeitos, deveria ter um rendimento de aproximadamente 72%, o qual, aliás, nunca atingido por um motor térmico real. Conhecido com o nome de “Ciclo de Carnot”, este ciclo teórico se compõe das seguintes fases:

12 = compressão isotérmica
23 = compressão adiabática
34 = expansão isotérmica
41 = expansão adiabática (Figura 30)

O ciclo de Carnot não pode ser objeto de nenhuma realização na prática. Pode ser descrito teoricamente da seguinte maneira:

Primeira fase: compressão isotérmica
uma massa gasosa é introduzida no cilindro e depois comprimida pelo pistão “temperatura constante”, sendo o cilindro esfriado durante esta fase.

Segunda fase: compressão adiabática
Sendo interrompido o resfriamento do cilindro, continua-se a compressão rapidamente de modo que nenhuma troca de calor tenha lugar entre o gás e o cilindro.

Terceira fase: expansão isotérmica
Ao passo que, durante a compressão isotérmica o cilindro deve ser resfriado, durante a expansão isotérmica, este mesmo cilindro exige aquecimento para tornar a temperatura constante.

Quarta fase: expansão adiabática
Continuando o repouso, faz-se cessar o reaquecimento do cilindro para que essa fase se efetue sem troca de calor com o cilindro e que a massa gasosa retome o volume e a pressão que possuía no início da primeira fase.

Figura 30 - Diagrama do Ciclo de Carnot

O rendimento de um ciclo de Carnot depende somente das temperaturas nas quais o calor é fornecido ou rejeitado, dado pela relação:
\[\eta_t = 1 - \frac{T_H}{T_I} = 1 - \frac{T_h}{T_i} = 1 - \frac{T_1}{T_2} \]

O rendimento também pode ser expresso pela relação de pressão ou taxa de compressão, durante os processos isoentrópicos:

taxa de pressão isoentrópica
\[r_{ps} = \frac{P_1}{P_4} = \frac{P_2}{P_3} = \left(\frac{T_3}{T_2} \right)^{\frac{1}{1-k}} \]

taxa de compressão isoentrópica
\[r_{vs} = \frac{V_4}{V_1} = \frac{V_3}{V_2} = \left(\frac{T_4}{T_2} \right)^{\frac{1}{1-k}} \]

Portanto:
\[\eta_t = 1 - r_{ps}^{(1-k)/k} = 1 - r_{vs}^{1-k} \]

Ciclos de Otto e Diesel

Nos dois processos que ocorrem nos Motores de Combustão Interna Alternativos de dois e quatro tempos, podemos incluir uma subdivisão:

1) MCI trabalhando a quatro tempos:
 a) Ciclo Otto;
 b) Ciclo Diesel.

2) MCI trabalhando a dois tempos:
 a) Ciclo Otto;
 b) Ciclo Diesel.

Ciclo Otto

(Volume Constante)

Em 1862, Beau de Rochas enunciou o ciclo de “quatro tempos” que, primeiramente, o alemão Otto aplicara a um motor térmico, de onde surgiu em algumas obras a designação de “Ciclo Otto”. Teoricamente, o ciclo enuncia-se da seguinte maneira: o enchimento do cilindro efetua-se com a pressão atmosférica, pois que:

AB = Compressão adiabática;
BC = Elevação brutal da pressão em volume constante;
CD = Expansão adiabática;
DA = Baixa brutal de pressão em volume constante.

O esvaziamento do cilindro se efetua em pressão atmosférica.

Primeira fase: **compressão adiabática**

Efetuada de maneira adiabática, a compressão leva os gases a uma certa temperatura, contudo insuficiente para provocar a inflamação.

Segunda fase: **transformação isovolumétrica**
Introduz-se uma fonte quente destinada a elevar instantaneamente a pressão dos gases (faísca elétrica) sem que o pistão tenha tempo de deslocar-se durante essa transformação de volume constante.

Terceira fase: **expansão adiabática**
Terminada a inflamação, a massa gasosa distende-se de maneira adiabática e o fim dessa distensão corresponde a uma baixa sensível de pressão.

Quarta fase: **expansão isocórica**
A abertura do escapamento provoca uma baixa brutal de pressão que leva o interior do cilindro à pressão atmosférica enquanto o pistão bascular em ponto morto (volume constante).

Na Figura 31, observa-se os diagramas teórico e real do ciclo em questão. Observe-se que o ciclo real é sensivelmente diferente.

O ciclo se aproxima do motor de combustão interna de ignição por centelha. Determina-se o rendimento térmico desse ciclo como se segue, admitindo-se constante o calor específico do ar:

\[
\eta_t = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{T_A}{T_B} = 1 - \left(\frac{v}{v_0}\right)^{1-k} = 1 - \frac{1}{\tau^{k-1}}
\]

Ciclo Quatro Tempos, Ciclo Otto
O ciclo segue os tempos indicados anteriormente sendo que, no 1º tempo, admite-se uma mistura ar-combustível. A combustão é iniciada por uma centelha (*spark*), gerada no interior do cilindro por uma vela (**spark plug**). A mistura ar-combustível, que é feita pelo carburador ou pela injeção eletrônica, é preparada aproximadamente nas seguintes proporções:

- 14,8:1 - 14,8 partes de ar para 1 parte de gasolina
- 9,0:1 - 9,0 partes de ar para 1 parte de álcool

A mistura entra no cilindro à pressão atmosférica e é comprimida pelo cilindro. Nos motores a gasolina, a taxa de compressão é, aproximadamente, de 9:1 e, nos a álcool, 12:1.

Ciclo Dois Tempos, Ciclo Otto
São utilizados principalmente em veículos motores de duas rodas, motocicletas. São motores mais simples e leves, possuem cerca de 70 a 90% de potência a mais do que um motor de quatro tempos de mesma cilindrada. Em contrapartida são mais poluentes (devido à queima de óleo lubrificante que é misturado ao combustível no carter durante a pré-compressão).
Ciclo de Diesel
(Volume Constante)

Quando Diesel se interessou pelo motor térmico, procurou realizar industrialmente um motor concebido segundo o ciclo de Sadi Carnot. Sabemos que a realização deste primeiro motor manifestou-se impossível. Diesel abandonou este ciclo, devido aos perigos que o mesmo apresentava pela compressão elevada demais (250kg); substituiu-o por um ciclo mais simples, conhecido como o nome de “ciclo Diesel”, cujo detalhe dá-se em seguida.

![Figura 32 - Diagramas do ciclo de Rudolf Diesel. A) diagrama teórico B) diagrama real.](image)

O enchimento e o esvaziamento do cilindro efetua-se com a pressão atmosférica, pois que:

- **AB** = compressão adiabática do ar puro aspirado antes;
- **BC** = combustão em pressão constante;
- **CD** = expansão adiabática;
- **DA** = baixa brutal da pressão.

Primeira fase: **compressão adiabática**

O ar puro aspirado anteriormente é comprimido e atinge uma temperatura suficiente para provocar a inflamação do combustível injetado.

Segunda fase: **compressão isobárica**

No começo da distensão, a combustão efetua-se em pressão constante, quando o volume aumenta e a expansão dos gases compensa a queda de pressão devida ao aumento de volume.

Terceira fase: **expansão adiabática**

A expansão efetua-se sem troca de calor com as paredes do cilindro.

Quarta fase: **baixa de pressão**

A abertura brutal do escapamento produz uma queda rápida da pressão enquanto o pistão báscula em ponto morto (volume constante).

O ciclo Diesel aplica-se aos motores lentos estudados para a propulsão dos barcos. Dificilmente realizável em um motor de regime elevado, carros leves e veículos industriais, os engenheiros que continuaram o trabalho de Diesel o substituíram por um motor de ciclo misto cujo funcionamento relaciona-se ao mesmo tempo com o ciclo Diesel e com o de Beau de Rochas (Otto).

O rendimento do ciclo Diesel é dado pela relação:
É importante notar que, no ciclo Diesel, a razão de compressão isoentrópica é maior do que a razão de expansão isoentrópica.

Ciclo Quatro Tempos, Ciclo Diesel

O engenheiro Rudolf Diesel (1858-1913), em fevereiro de 1892 publicou em Berlim um fascículo intitulado “Teoria e construção de um motor térmico racional” onde expunha suas idéias para a realização prática do ciclo de Carnot. Ainda na Alemanha, começa a construção do seu primeiro motor em Ausburgo. Em 1897, utilizando um já melhorado (monocilíndrico, diâmetro de 250mm, curso de 400mm e consumo de 247g de combustível por cavalo e por hora), desenvolve 20HP a 172rpm e rendimento térmico de 26,2% (os motores a gasolina rendiam 20% e os a vapor 10%).

O motor desenvolvido, trabalhando a quatro tempos, possui basicamente duas grandes diferenças de um motor a gasolina:

1. O motor aspira e comprime apenas ar.

Ciclo Dois Tempos, Ciclo Diesel

O motor Diesel a dois tempos não trabalha com uma pré-compressão no carter. Ele tem carregamento forçado por meio de um compressor volumétrico (rotativo) ou de uma ventoinha. Possui também um sistema de lubrificação semelhante aos motores de quatro tempos, isto é, leva óleo no carter e possui bomba de óleo, filtro, etc. Vê-se, na Figura 88, um exemplo de motor Diesel dois tempos.

![Diagrama do Ciclo Diesel a dois tempos](image)

Estando os orifícios de escapamento e de admissão fechados pelo pistão, que está aproximando-se do ponto morto superior, o combustível é injetado no cilindro e a combustão começa.

As pressões elevadas, geradas pela combustão no tempo motor repelêm em sentido oposto o pistão, que age na biela fazendo o virabrequim girar.
No fim do tempo motor, a posição do pistão permite a abertura do orifício de escapamento. A saída foi estudada de modo a garantir a evacuação rápida dos gases queimados no coletor de escapamento.

Imediatamente depois, o orifício de admissão é descoberto e o ar contido na câmara de ar alimentada pelo compressor em baixa pressão entra precipitadamente no cilindro, expelindo os gases queimados residuais pelos orifícios de escapamento.

Figura 33 - Esquema de funcionamento do Motor Diesel 2 tempos.

Vantagens: O motor de dois tempos, com o mesmo dimensionamento e rpm, dá uma maior potência que o motor de quatro tempos e o torque é mais uniforme. Faltam os órgãos de distribuição dos cilindros, substituídos pelos pistões, combinados com as fendas de escape e combustão, assim como as de carga.

Desvantagens: Além das bombas especiais de exaustão e de carga, com menor poder calorífico e consumo de combustível relativamente elevado; carga calorífica consideravelmente mais elevada que num motor de quatro tempos, de igual dimensionamento.

Figura 34 - Gráfico de pressões em um motor Diesel de dois tempos com válvula de admissão no cabeçote e fendas de exaustão por fluxo contínuo.

Ciclo Misto

O ciclo misto aplica-se aos motores Diesel modernos. A Figura 90, que segue, mostra os diagramas teórico e real.
O ciclo misto teórico enuncia-se: o enchimento e o escapamento efetua-se à pressão atmosférica.

AB = compressão adiabática
BC = combustão isovolumétrica (isocórica);
CD = expansão isobárica;
DE = expansão adiabática;
EA = queda rápida na pressão.

A comparação dos diagramas mostra bem que esses dois ciclos se assemelham no plano prático; é que na realidade o motor a gasolina não é completamente de pressão variável e de volume constante, mas se aproxima do ciclo misto porque a “explosão” dos gases é apenas uma combustão rápida, mas não instantânea.

PRINCIPAIS COMPONENTES DOS MCI

Os principais componentes de um MCI são colocados em seguida:

peças fixas
1. bloco do motor
2. cabeçote
3. cárter

peças móveis
1. pistão (êmbolo)
2. biela
3. árvore de manivelas (virabrequim)
4. válvulas de admissão e escape
5. árvore de comando de válvulas

Bloco do Motor

É o motor propriamente dito, onde são usinados os cilindros ou os furos para a colocação destes; os motores arrefecidos a ar levam cilindros aletados, possuindo, geralmente, bloco baixo permitindo que os cilindros fiquem expostos à circulação do ar de arrefecimento.

Na parte inferior do bloco estão os alojamentos dos mancais centrais, onde se apóia o eixo de manivelas (virabrequim). Nos motores horizontais (e.g., do fusca), de cilindros opostos, o eixo de manivelas acha-se no centro do bloco, este, por sua vez, é composto de duas partes justapostas, afixadas por parafusos. Figura 36.
Cabeçote

É uma espécie de tampa do motor contra a qual o pistão comprime a mistura, no caso do ciclo Otto, ou o ar, no caso do Diesel. Geralmente possui furos com rosas onde são instaladas as velas de ignição ou os bicos injetores e onde estão instaladas as válvulas de admissão e escape com os respectivos dutos. Figura 37.

Carter

Parte inferior do bloco, cobrindo os componentes inferiores do motor, e onde está depositado o óleo lubrificante.

Figura 36 - Bloco do Motor

Pistão

É a parte móvel da câmara de combustão, recebe a força de expansão dos gases queimados, transmitida-a à biela, por intermédio de um pino de aço (pino do pistão). É em geral fabricado em liga de alumínio. Figura 93.
Biela

Braço de ligação entre o pistão e o eixo de manivelas; recebe o impulso do pistão, transmitindo-o ao eixo de manivelas (virabrequim). É importante salientar que o conjunto biela-virabrequim transforma o movimento retilíneo do pistão em movimento rotativo do virabrequim. Figura 38.

Virabrequim

(Eixo de manivelas, Árvore de manivelas)

Eixo motor propriamente dito, o qual, na maioria das vezes, é instalado na parte inferior do bloco, recebendo ainda as bielas que lhe imprimem movimento. Figura 94.

Eixo Comando de Válvulas

(Árvore Comando da Distribuição)

A função deste eixo é abrir as válvulas de admissão e escape, respectivamente, nos tempos de admissão e escapamento. É acionado pelo eixo de manivelas, através de engrenagem, corrente ou ainda, correta dentada. É dotado de ressaltos que elevam o conjunto: tucho, haste, balancim abrindo as válvulas no momento oportuno. Figura 38.

Válvulas

Existem dois tipos: de admissão e de escape. A primeira abre-se para permitir a entrada da mistura combustível/ar (ou ar puro, conforme o caso) no interior do cilindro. A outra, de escape, abre-se para dar saída aos gases queimados. Figura 94.
Conjunto de Acionamento das Válvulas

Compreende o tucho e uma haste, que o interliga ao balancim, apoiando-se diretamente sobre a válvula. No momento em que o eixo comando de válvulas gira, o ressalto deste aciona o tucho, que por sua vez move a haste, fazendo com que o balancim transmita o movimento à válvula, abrindo-a. Há um conjunto destes (tucho, haste, balancim) para cada ressalto, i. e., um para cada válvula, tanto de admissão quanto de escape. Figura 39.

Figura 39 - Eixos, tuchos e válvulas

COMBUSTÍVEIS

Diesel

Motores precisam, para a auto-ignição e queima perfeita, de combustíveis de alto ponto de ignição. A pré-combustão é a tendência do combustível à auto-ignição quando da injeção, no motor Diesel, e é característica importante para o desempenho do combustível, neste tipo de motor; é medida pelo índice de cetana.

O óleo Diesel é uma mistura de hidrocarbonetos com ponto de ebulição entre 200 e 360°C, obtido por destilação do petróleo por hidrogenação, síntese, ou craqueamento catalítico a baixas temperaturas. Tem poder calorífico médio (ou calor de combustão) de 11.000 kcal/kg.

O óleo Diesel comum, ou comercial, utilizado universalmente, embora atenda aos requisitos básicos em termos de características físicas e químicas, requer cuidados quanto ao manuseio e utilização. A água, presente, em maior ou menor concentração, é o principal contaminante e deve sempre ser removida, por centrifugação ou filtragem especial com decantadores. Como os componentes das bombas e bicos injetores são construídos com folgas adequadas à lubrificação pelo próprio óleo Diesel, a presença de água os danifica.
imediatamente. Além de água, todo óleo Diesel tem um certo teor de enxofre, que não pode ser removido, do qual resulta, após a combustão, compostos nocivos à saúde.

São as seguintes as características e especificações para o óleo Diesel adequado:

<table>
<thead>
<tr>
<th>PROPRIEDADE</th>
<th>ESPECIFICAÇÃO</th>
<th>METODO DE TESTE EM LABORATÓRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosidade</td>
<td>ASTM D-445</td>
<td>1,3 a 5,8 CentiStoke a 40°C</td>
</tr>
<tr>
<td>Número de Cetana</td>
<td>ASTM D-613</td>
<td>No mínimo 40, exceto em clima frio e serviço em marcha lenta por períodos prolongados, quando será necessário número mais elevado.</td>
</tr>
<tr>
<td>Teor de Enxofre</td>
<td>ASTM D-129 ou 1552</td>
<td>Não deve exceder a 1,0% em peso.</td>
</tr>
<tr>
<td>Teor de água e sedimentos</td>
<td>ASTM D-1796</td>
<td>Não deve exceder a 0,1% em peso.</td>
</tr>
<tr>
<td>Resíduos de carbono</td>
<td>ASTM D524 ou D-189</td>
<td>Não deve exceder a 0,25% em peso em 10% de resíduos.</td>
</tr>
<tr>
<td>Ponto de fulgor</td>
<td>ASTM D-93</td>
<td>52°C (125°F) mínimo. Algumas sociedades classificadoras exigem ponto de fulgor mais elevado.</td>
</tr>
<tr>
<td>Ponto de Névoa</td>
<td>ASTM D-97</td>
<td>12°C abaixo da temperatura esperada de operação.</td>
</tr>
<tr>
<td>Corrosão por enxofre ativo sobre lâmina de cobre</td>
<td>ASTM D-130</td>
<td>Não deve exceder o n° 2 após 3 horas a 50°C.</td>
</tr>
<tr>
<td>Teor de cinzas</td>
<td>ASTM D-482</td>
<td>Não deve exceder a 0,02% em peso.</td>
</tr>
<tr>
<td>Destilação</td>
<td>ASTM D-86</td>
<td>A curva de destilação deve ser suave e contínua. 98% do combustível deve evaporar abaixo de 360°C. Todo o combustível deve evaporar abaixo de 385°C.</td>
</tr>
</tbody>
</table>

Os hidrocarbonetos não carburados (perdas na exaustão e por vazamentos nas vedações dos pistões), o formaldeído (reação parcial da mistura de combustível e ar), o monóxido de carbono, os óxidos nítricos (reação do ar com pressão e temperaturas elevadas) e todos os componentes de mau cheiro como a fuligem podem causar problemas. A importância dos componentes carcinógenos e tóxicos nos gases de escapamento é preocupação no mundo inteiro e vem sendo objeto de padrões e normas para a proteção ambiental.

Energia Térmica do Combustível

A energia térmica liberada na combustão não é totalmente aproveitada para a realização de trabalho pelo motor. Na realidade, a maior parcela da energia é desperdiçada de várias formas. Motores Diesel de grande porte e baixa rotação tem melhor aproveitamento da energia obtida na combustão. O calor gerado pelo poder calorífico do óleo Diesel se disperse e apenas uma parcela é transformada em potência útil. Para os motores Diesel de pequeno porte e alta rotação, em média, o rendimento térmico se situa entre 36 e 40%, o que para máquinas térmicas, é considerado alto. Abaixo vemos um diagrama de fluxo térmico para um motor Diesel de grande cilindrada (diagrama Sankey), onde se pode ter uma ideia de como o calor é aproveitado.
Figura 40 - Diagrama de fluxo térmico de um motor Diesel de grande cilindrada com turbocompressor acionado pelos gases de escape e refrigeração forçada.

Na figura acima, o calor aduzido de 1508 kcal/cv.h com pe=8 kp/cm². Vê-se que 41,5% do calor é transformado em potência útil, 22,4% é trocado com a água de refrigeração e 36,1% sai com os gases de escape.

Relação Ar-Combustível

Para a combustão completa de cada partícula de combustível, requer-se, da mistura, de acordo sua composição química, uma determinada quantidade de oxigênio, ou seja, de ar: é o ar teórico necessário, Ar\text{min}. A falta de ar (misturarica) produz, em geral, um consumo demasiado alto de combustível, e formação de CO (monóxido de carbono) ou fuligem.

A combustão, nos motores, exige um excesso de ar. Se se estabelece a relação entre a quantidade real de ar Ar\text{real} e a teórica, Ar\text{min}, tem-se a relação \(\lambda = (\text{Ar}_{\text{real}} / \text{Ar}_{\text{min}}) \), que no motor Otto, fica entre 0,9 e 1,3. No motor Diesel a plena carga, normalmente, não é inferior a 1,3 e com o aumento da carga pode subir bastante. Depende da qualidade da mistura, do combustível, da forma da câmara de combustão, do estado térmico (carga) e de outras circunstâncias. A quantidade de ar teórico, Ar\text{min}, pode ser calculada em função da composição química do combustível. Os filtros de ar, tubulações, passagens e turbo-alimentador são dimensionados em função da quantidade de ar necessária à combustão e devem ser mantidos livres e desobstruídos, a fim de não comprometer o funcionamento do motor.

Gases de Escape - Emissões

O processo de combustão é uma reação química de oxidação que se processa em altas temperaturas.

Nos motores em geral, o processo de combustão oxida uma parcela dos componentes que são admitidos no interior do cilindro. O combustível, principalmente os derivados de petróleo, é, na realidade uma mistura de hidrocarbonetos que contém também outros materiais, tais como enxofre, vanádio, sódio, potássio, etc. Por outro lado, o ar, utilizado como comburente, é uma mistura de gases diversos, como sabemos. O oxigênio contido no ar é o que realmente interessa ao processo de combustão. Os demais gases, como o nitrogênio, ao se combinarem com alguns outros componentes do combustível, podem produzir compostos indesejáveis, os quais são lançados na atmosfera, misturando-se ao ar que respiramos. Alguns desses compostos, como o SO\textsubscript{2}, são prejudiciais e atualmente são objeto de preocupação mundial. As
organizações internacionais, como a EPA, nos Estados Unidos, o CONAMA, do Brasil e outras entidades, vem estabelecendo padrões para controle dos níveis de emissões desses poluentes e, se considerarmos os milhões de motores que existem no planeta, emitindo milhões de toneladas desses produtos diariamente, veremos que, realmente, existem motivos para preocupações.

Para os automóveis, na Europa já é obrigatório o uso de catalisadores e no Brasil essa obrigação será estabelecida em futuro próximo. Os DETRAN já estão equipados com os equipamentos de medição de emissões e, a partir do próximo ano, não mais serão licenciados veículos com altos níveis de emissões. Os motores Diesel produzidos atualmente necessitam atender a limites estabelecidos em normas internacionais, sendo esses limites, periodicamente, reduzidos a fim de obrigar os fabricantes a desenvolverem motores capazes de produzirem potência com o máximo aproveitamento do combustível e o mínimo de emissões. Como ilustração, vide abaixo tabela de emissões de um motor Diesel novo, em boas condições de operação e aprovado em testes de emissões:

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Emissão (gr/HP.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>2,40</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>11,49</td>
</tr>
<tr>
<td>CO</td>
<td>0,40</td>
</tr>
<tr>
<td>PM</td>
<td>0,50</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0,62</td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
<td>510</td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
<td>3.400</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
<td>490</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>180</td>
</tr>
</tbody>
</table>

A COMBUSTÃO NO MOTOR DIESEL

a) **Processo por injeção:** O gás de combustão aspirado ou induzido sob pressão é tão comprimido (temperatura entre 550 e 600° C), que se dá a auto-ignição. Uma parte do combustível, injetado em primeiro lugar, queima rapidamente e o que é injetado em seguida, em maior quantidade, queima a pressão aproximadamente constante. A combustão não ocorre inteiramente, caso não se sucedam no tempo certo o aquecimento do combustível e a ignição. A injeção começa antes do pistão atingir o PMS, no tempo de compressão. Só se consegue uma boa combustão, quando há a melhor mistura possível entre as gotículas de combustível e o ar necessário à combustão. Para tanto, faz-se necessário, entre outras coisas, a adequação do jato de combustível à forma da câmara de combustão (com ou sem repartições). Outras possibilidades: um ou mais jatos; disposição dos jatos; comprimento dos jatos; sua força; tamanho das gotículas, turbilhonomiento mais intenso do ar de combustão. Forma do pistão; câmara de combustão repartida, com câmaras de ar, pré-câmaras, ou câmaras de turbilhonomiento e também fluxo de ar tangencial.

b) **Ignição:** Pode não se dar uma sensível vaporização do combustível Diesel, de elevado ponto de ebulição, devido à rapidez do processo. As gotículas de combustível que são injetadas, inflamam-se após terem sido levadas à temperatura de auto-ignição, pelo ar pré-aquecido e comprimido, no cilindro. O intervalo de tempo entre a injeção e a ignição deve estar sincronizado com a calagem da árvore de manivelas, correspondente a elevação adequada de pressão. O retardo da ignição deve ser o mínimo possível; caso contrário, chega à câmara de combustão, uma quantidade excessiva de combustível não queimado, que irá produzir aumento de pressão no próximo tempo de compressão e
reduzir a lubrificação entre as camisas dos cilindros e os anéis de segmento, resultando, com a continuidade do processo, em desgaste, que num primeiro momento, é conhecido como “espelhamento” das camisas dos cilindros. Combustíveis Diesel com boa ignição, tem um pequeno retardo; proporcionam compressão uniforme para a combustão e operação suave do motor. O retardo da ignição, depende do tipo de combustível, pressão e temperatura na câmara de combustão.

c) **Retardo da injeção:** Medido pela calagem da árvore de manivelas, é o intervalo de tempo necessário ao pistão da bomba de injeção, para levar a quantidade de combustível situada entre a canalização da bomba e o asento da válvula de injeção (bico injetor), à pressão de injeção. Infelizmente é quase impossível, especialmente nos motores de funcionamento rápido, controlar de maneira satisfatória o programa de combustão (“Lei de aquecimento”) e a variação da pressão durante a combustão mediante o início e o desenvolvimento da injeção, a não ser com baixa compressão, que por outro lado diminui o rendimento e se opõe frontalmente ao princípio do motor Diesel. No tempo de alguns centésimos de segundo entre o começo da injeção e a ignição, uma parte importante da quantidade injetada penetra na câmara de combustão e se inflama rápida e simultaneamente com o imprevisto aumento de pressão. Além disto, durante a ignição na fase fluida se formam peróxidos com um indesejável caráter explosivo. Estas “batidas” dão aos carburantes um maior retardamento de ignição impróprio para motores Diesel.

A temperatura dos gases tem como limite superior a resistência das peças à alta temperatura e a qualidade do óleo lubrificante e como limite inferior, a temperatura da atmosfera. O limite superior de pressão é dado pelo fato de que um aumento de compressão, mesmo que pequeno, acarreta um aumento nas forças do motor e no seu peso. O limite inferior, é o da pressão atmosférica. As limitações de Volume são consequência da necessidade de se evitar expansões demasiado grandes, pois só se consegue uma pequena vantagem de potência com a desvantagem de um motor muito grande.

Para avaliar o nível da conversão de energia no motor, há processos de cálculo que permitem determinar as limitações acima.

Tipos de Injeção de Combustível

O ponto mais importante é a formação da mistura mediante a injeção do combustível diretamente antes e durante a auto-ignição e combustão na carga de ar fortemente comprimida. Durante seu desenvolvimento foram encontradas várias soluções que em parte coexistem ainda em nossos dias.

a) **Injeção indireta:** Uma pequena parte da câmara de combustão (antecâmara) é separada da parte principal mediante um estreitamento. O combustível, que em sua totalidade é injetado na antecâmara mediante uma bomba dosificadora a êmbolo com funcionamento de excêntrico, com uma pressão entre 80 e 120 at, dependendo do projeto do motor, inflama-se e queima parcialmente ali; a sobrepressão instantânea assim formada sopra a mistura inflamada com um efeito de pulverização e turbulência violentas através do “canal de disparo” até a câmara principal rica de ar. As paredes da antecâmara, sobretudo o ponto de impacto do jato entrante, são mantidas com a temperatura mais elevada possível, pois desta forma auxiliam na preparação e ignição do combustível. Embora tenha a vantagem de produzir menos componentes de gás de escape prejudiciais à saúde, produz maiores perdas de calor, devido a multiplicação de superfícies de permutação, o que resulta em maior consumo específico de combustível e, atualmente, é um processo pouco utilizado nos motores modernos.
Antecâmara no cabeçote de um motor Diesel de 4 tempos. A parte inferior da antecâmara **a** é quente, porque se encontra separada das paredes refrigeradas pelo entreferro. Descontinuidade da pressão na antecâmara e insuflação na parte principal da câmara de combustão mediante um canal injetor. **b** = tubulação de combustível; **c** = ignição auxiliar para partidas a frio; **d** = passagem da água de refrigeração para o cabeçote.

Figura 41 – Tipos de Injeção Indireta

Antecâmara tipo esférica. A câmara de turbulência **a** contém quase toda a carga de ar que, no percurso de compressão, penetra tangencialmente pelo canal **b** começando um movimento circular; **c** = tubulação de combustível.

b) **Injeção direta:** O combustível é injetado diretamente sobre a cabeça do pistão mediante um bico injetor, com um ou vários pequenos furos (diâmetros de 0,1 a 0,3 mm) direcionados segundo um ângulo apropriado. Funciona com pressões muito elevadas (até 400 at) para conseguir uma pulverização muito fina e uma distribuição adequada do combustível no ar de carburação. O jato único forma uma neblina composta de gotas minúsculas que costuma se inflamar em primeiro lugar na proximidade de entrada. A formação da mistura é acelerada e melhorada quando o ar de carburação executa um movimento rápido em relação à névoa do combustível. Com isto o movimento circular e turbulento do ar se produz de várias formas já com o processo de sucção ou com a compressão. A maioria dos motores modernos utilizam o processo de injeção direta de combustível, em virtude do seu melhor rendimento térmico.
Componentes do Sistema de Injeção

a) **Bomba injetora**: A injeção do combustível Diesel é controlada por uma bomba de pistões responsável pela pressão e dosagem para cada cilindro, nos tempos corretos. Na maioria dos motores Diesel, utiliza-se uma bomba em linha dotada de um pistão para cada cilindro e acionada por uma árvore de camisas que impulsiona o combustível quando o émbolo motor (pistão) atinge o ponto de início de injeção, no final do tempo de compressão. Alguns motores utilizam bombas individuais para cada cilindro e há outros que utilizam uma bomba de pressão e vazão variáveis, fazendo a injeção diretamente pelo bico injetor acionado pela árvore de comando de válvulas. Há ainda aqueles que utilizam bombas rotativas, que distribuem o combustível para os cilindros num processo semelhante ao do distribuidor de corrente para as velas utilizado nos motores de automóveis.

As bombas injetoras, rotativas ou em linha, para que funcionem, são instaladas no motor sincronizadas com os movimentos da árvore de manivelas. Ao processo de instalação da bomba injetora no motor dá-se o nome de **calagem da bomba**. Cada fabricante de motor adota, segundo o projeto de cada modelo que produz, um processo para a calagem da bomba injetora. Na maioria dos casos, a coincidência de marcas existentes na engrenagem de acionamento da bomba com as marcas existentes na engrenagem acionadora é suficiente para que a bomba funcione corretamente. Em qualquer caso, porém, é absolutamente necessário consultar a documentação técnica fornecida pelo fabricante, sempre que se for instalar uma bomba injetora, pois os procedimentos são diferentes para cada caso.
Figura 43 – Bomba injetora em linha com regulação de aresta chanfrada (Bosch).

Posições
1 = êmbolo da bomba *a* no ponto morto inferior;
2 = com movimento de *a* para cima fecha-se o furo de afluxo *i*;
3 = com o prolongamento do movimento para cima o ressalto de acionamento *k* abre o furo de refluxo *l*;
4 = diminuição do volume de fluxo girando o êmbolo da bomba *a* mediante a cremalheira de regulação *h* e a luva de regulação *f*; esta tem, em sua parte inferior, uma fenda longitudinal na qual penetra uma peça transversal de *a*;
5 = volume zero

Figura 44 – Posições dos pistões de 1 a 5 para a regulação da quantidade injetada para a Bomba Injetora (Bosch).
Figura 45 – Bomba Injetora BOSCH em linha com bomba alimentadora.
b) **Bicos injetores:** Normalmente instalados nos cabeçotes, tem a finalidade de prover o suprimento de combustível pulverizado em forma de névoa. A agulha do injetor se levanta no começo da injeção devido ao impacto da pressão na linha de combustível, suprida pela bomba injetora. Durante os intervalos de tempo entre as injeções, se mantém fechado automaticamente pela ação de uma mola. Uma pequena quantidade de combustível, utilizada para lubrificar e remover calor das partes móveis dos injetores é retornada ao sistema de alimentação de combustível. Os bicos injetores, assim como as bombas, são fabricados para aplicações específicas e não são intercambiáveis entre modelos.
diferentes de motores. Em muitos casos, um mesmo modelo de motor, em decorrência de alguma evolução introduzida na sua produção, utiliza um tipo de bico injetor até um determinado número de série e outro a partir de então, sem que sejam intercambiáveis entre si. É necessário ter atenção especial quando for o caso de substituir bicos ou bombas injetoras, para que sejam utilizados os componentes corretos.

A agulha do bico b que fecha com o auxílio de uma forte mola a, é levantada pela elevada pressão do combustível bombeado em c.

d = linha de pressão;

e = parafuso de ajuste para a regulação da pressão de injeção;

Figura 48 – Bico injetor.

LUBRIFICAÇÃO DO MOTOR

O sistema de lubrificação do motor Diesel é dimensionado para operar com um volume de óleo lubrificante de 2 a 3 litros por litro de cilindrada do motor e vazão entre 10 e 40 litros por Cavalo-hora, conforme o projeto do fabricante.

Os componentes básicos do sistema de lubrificação, encontrados em todos os motores Diesel, são:

a) Carter de óleo, montado sob o bloco, dotado de capacidade adequada à potência do motor;

b) Bomba de circulação forçada, geralmente do tipo de engrenagem, acionada pela árvore de manivelas do motor;

c) Regulador de pressão (geralmente uma válvula na própria bomba);

d) Trocador de calor do óleo lubrificante;

e) Filtro(s) de fluxo integral e de desvio e

f) Acessórios, tais como sensores de pressão, pressostatos e manômetro.
Filtros

Os filtros, na maioria dos casos, são do tipo cartucho de papel descartável e devem ser substituídos a cada troca do óleo lubrificante, nos períodos recomendados pelo fabricante do motor. Atualmente, o tipo mais utilizado é o “spin-on”, atarrachante. O filtro de fluxo integral é dotado de uma válvula acionada por pressão diferencial que, em caso de entupimento do elemento, abre-se, deixando circular o óleo sem filtrar, não permitindo que o motor traballe sem circulação de lubrificante. Nem sempre é vantajoso utilizar o elemento de filtro mais barato. Aparentemente, todos os elementos de filtro disponíveis no mercado (e são muitos) são iguais. Entretanto, há diferenças imperceptíveis que devem ser consideradas. Como não é possível, para o consumidor fazer testes de qualidade dos filtros aplicados nos motores que utiliza, é recomendável que se adquiram somente elementos de filtro que sejam homologados pelos fabricantes de motores, os quais já efetuarem os testes de qualidade apropriados. São conhecidos como marcas de primeira linha e, em geral, equipam motores que saem da linha de montagem.

Trocador de Calor

O trocador de calor (ou radiador de óleo) tem a finalidade de transferir calor do óleo lubrificante, cuja temperatura não pode ser superior a 130°C, para o meio refrigerante utilizado no motor. Nos motores refrigerados a ar o trocador de calor é instalado na corrente de ar. A transferência de calor para o refrigerante é de aproximadamente 50 kcal / cv.h para os motores refrigerados a água e de 100 kcal / cv.h nos motores com refrigeração a ar.

Óleo Lubrificante

O óleo lubrificante está para o motor assim como o sangue está para o homem. Graças ao desenvolvimento da tecnologia de produção de lubrificantes, é possível, atualmente, triplicar a vida útil dos
motores pela simples utilização do lubrificante adequado para o tipo de serviço. Os óleos lubrificantes disponíveis no mercado são classificados primeiro, pela classe de viscosidade SAE (Society Of Automotive Engineers) e a seguir, pela classe de potência API (American Petroleum Institute).

A característica mais importante do óleo lubrificante é a sua viscosidade, que é a resistência interna oferecida pelas moléculas de uma camada, quando esta é deslocada em relação a outra; é o resultado de um atrito interno do próprio lubrificante. Existem vários aparelhos para medir a viscosidade. Para os óleos lubrificantes utilizados em motores, é adotado o Viscosímetro Saybolt Universal.

O sistema Saybolt Universal consiste em medir o tempo, em segundos, do escoamento de 60 ml de óleo, à determinada temperatura. A indicação da viscosidade é em SSU (Segundos Saybolt Universal). As temperaturas padronizadas para o teste são 70°, 100°, 130° ou 210°F, que correspondem, respectivamente, a 21,1°C, 37,8°C, 54,4°C e 89,9°C. Em essência, consiste de um tubo de 12,25 mm de comprimento e diâmetro de 1,77 mm, por onde deve escoar os 60 ml de óleo.

Classificações

A SAE estabeleceu a sua classificação para óleos de carter de motor segundo a tabela:

<table>
<thead>
<tr>
<th>Nº</th>
<th>VISCOSIDADE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE</td>
<td>SSU a 0° F</td>
<td>SSU a 210 °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>5 w</td>
<td>-</td>
<td>4.000</td>
<td>-</td>
</tr>
<tr>
<td>10 w</td>
<td>6.000</td>
<td>< 12.000</td>
<td>-</td>
</tr>
<tr>
<td>20 w</td>
<td>12.000</td>
<td>48.000</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td>< 58</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>58</td>
<td>< 70</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>< 85</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>85</td>
<td>< 110</td>
<td></td>
</tr>
</tbody>
</table>

A letra w (Winter = inverno) indica que a viscosidade deve ser medida a zero grau Farenheit. Observa-se que o número SAE não é um índice de viscosidade do óleo, mas sim uma faixa de viscosidade a uma dada temperatura; exemplificando, um óleo SAE 30 poderá ter uma viscosidade a 210 °F entre 58 e 70 SSU.

O API classificou os óleos lubrificantes, designando-os segundo o tipo de serviço. As classificações API, encontradas nas embalagens dos óleos lubrificantes, são:

a) **ML (Motor Light)**.

Óleos próprios para uso em motores a gasolina que funcionem em serviço leve; tais motores não deverão ter características construtivas que os tornem propensos à formação de depósitos ou sujeitos à corrosão dos mancais.

b) **MM (Motor Medium)**

Óleos próprios para motores a gasolina, cujo trabalho seja entre leve e severo; tais motores poderão ser sensíveis à formação de depósitos e corrosão de mancais, especialmente quando a temperatura do óleo se eleva, casos em que se torna indicado o uso de óleos motor medium.

c) **MS (Motor Severe)**

Óleos indicados para uso em motores a gasolina sob alta rotação e serviço pesado, com tendência à corrosão dos mancais e à formação de verniz e depósitos de carbono, em virtude não só de seus detalhes de construção como ao tipo de combustível.

d) **DG (Diesel General)**
Óleos indicados para uso em motores Diesel submetidos a condições leves de serviço, nos quais o combustível empregado e as características do motor tendem a não permitir o desgaste e a formação de resíduos.

e) DM (Diesel Medium)

São óleos próprios para motores Diesel funcionando sob condições severas, usando, além disso, combustível tendente a formar resíduos nas paredes dos cilindros — sendo, porém, as características do motor tais, que o mesmo é menos sensível à ação do combustível do que aos resíduos e ao ataque do lubrificante.

f) DS (Diesel Severe)

Óleos próprios para motores Diesel especialmente sujeitos a serviço pesado, onde tanto as condições do combustível quanto as características do motor se somam na tendência de provocar desgaste e formar resíduos.

Com a finalidade de facilitar a escolha dos óleos pelo consumidor leigo, o API, com a colaboração da ASTM e SAE, desenvolveu o sistema de classificação de serviço indicado pela sigla “S” para os óleos tipo “Posto de Serviço” (Service Station) e C para os óleos tipo “comercial” ou para serviços de terraplanagem. Abaixo a classificação de serviço:

<table>
<thead>
<tr>
<th>CLASSIFICAÇÃO DE SERVIÇO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Serviço de motor a gasolina e Diesel;</td>
</tr>
<tr>
<td>SB</td>
<td>Serviço com exigências mínimas dos motores a gasolina;</td>
</tr>
<tr>
<td>SC</td>
<td>Serviço de motor a gasolina sob garantia;</td>
</tr>
<tr>
<td>SD</td>
<td>Serviço de motores a gasolina sob garantia de manutenção;</td>
</tr>
<tr>
<td>SE</td>
<td>Serviço de motores a gasolina em automóveis e alguns caminhões;</td>
</tr>
<tr>
<td>CA</td>
<td>Serviço leve de motor Diesel;</td>
</tr>
<tr>
<td>CB</td>
<td>Serviço moderado de motor Diesel;</td>
</tr>
<tr>
<td>CC</td>
<td>Serviço moderado de motor Diesel e a gasolina e</td>
</tr>
<tr>
<td>CD</td>
<td>Serviço severo de motor Diesel.</td>
</tr>
</tbody>
</table>

Também as forças armadas americanas estabeleceram especificações para os óleos lubrificantes, que são encontradas nas embalagens comerciais como MIL-L-2104-B e MIL-L-2104C, para motores Diesel.

As diferenças entre os diversos tipos de lubrificantes reside nas substâncias adicionadas ao óleo para dotá-lo de qualidades outras. São os Aditivos, que não alteram as características do óleo, mas atuam no sentido de reforçá-las.

Os aditivos comumente usados são:

<table>
<thead>
<tr>
<th>FINALIDADE</th>
<th>TIPO DE COMPOSTO USADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atioxidantes ou inibidores de oxidação</td>
<td>Compostos orgânicos contendo enxofre, fósforo ou nitrogênio, tais como aminas, sulfetos, hidroxisulfetos, fenóis. Metais, como estanho, zinco ou bário, frequentemente incorporados</td>
</tr>
<tr>
<td>Anticorrosivos, preventivos da corrosão ou “venenos” catalíticos</td>
<td>Compostos orgânicos contendo enxofre ativo, fósforo ou nitrogênio, tais como sulfetos, sais metálicos do ácido trifosfórico e céras sulfuradas.</td>
</tr>
</tbody>
</table>
Detergentes Compostos orgâno-métalicos, tais como fosfatos, alcoolatos, fenolatos. Sabões de elevado peso molecular, contendo metais como magnésio, bário e estanho.

Dispersantes Compostos orgâno-métalicos, tais como naftenatos e sulfonatos. Sais orgânicos contendo metais com cálcio, cobalto e estrôncio.

Agentes de pressão extremo Compostos de fósforo, como fosfato tricresílico, óleo de banha sulfurado, compostos halogenados. Sabões de chumbo, tais como naftenato de chumbo.

Preventivos contra a ferrugem Aminas, óleos gordurosos e certos ácidos graxos. Derivados halogenados de certos ácidos graxos. Sulfonatos.

Redutores do ponto de fluides Produtos de condensação de alto peso molecular, tais como fenóis condensados com cera clorada. Polímeros de metacrilato.

Reforçadores do índice de viscosidade Olefinas ou iso-olefinas polimerizadas. Polímeros butílicos, ésteres de celulose, borracha hidrogenada.

Inibidores de espuma Silicones

Como a viscosidade é a característica mais importante do óleo lubrificante, é natural que os centros de pesquisas do ramo dedicassem especial atenção a essa propriedade.

Sabe-se que todos os óleos apresentam uma sensibilidade à temperatura, no que concerne à viscosidade; alguns serão mais sensíveis que outros, observando-se que os óleos naftênicos sofrem mais a sua ação que os parafínicos.

Com o desenvolvimento técnico exigindo qualidades mais aprimoradas dos óleos, muitas vezes chamados a trabalhar em condições de temperatura bastante variáveis, tornou-se necessário conhecer bem as características viscosidade versus temperatura em uma faixa bastante ampla. A variação da viscosidade com a temperatura não é linear. Ou seja, não é possível estabelecer, a priori, quanto irá variar a viscosidade quando for conhecida a variação de temperatura.

Os estudos desenvolvidos nessa área até os dias atuais, levaram os fabricantes de lubrificantes a produzirem óleos capazes de resistirem às variações de temperatura, de forma a se comportarem como se pertencessem a uma classe de viscosidade a zero grau Farenheit e a outra classe a 210 graus Farenheit. Tais óleos são conhecidos como “multigrade” ou “multiviscosos”.

Os fabricantes de motores Diesel, também, como resultado das pesquisas que realizam, chegaram a desenvolver composições de óleos que hoje são encontradas a venda no mercado. A Caterpillar desenvolveu o óleo que hoje é comercializado com a classificação denominada “Série – 3”, que é indicado para uso em motores Diesel turbo-alimentados e supera todas as classificações API. A Cummins desenvolveu um óleo fortemente aditivado com componentes sintéticos, que denominou de “Premium Blue”, cuja licença de fabricação, nos Estados Unidos, já foi concedida à Valvoline. Sua principal característica é a alta durabilidade.

Atualmente, a melhor indicação para lubrificação dos motores Diesel que operam em temperaturas superiores a 14°F (-10°C), recai sobre os óleos multiviscosos (15w40 ou 20w40), que mantém durante o funcionamento do motor a viscosidade praticamente constante e são aditivados para preservar suas características durante um maior número de horas de serviço.

REFRIGERAÇÃO (OU ARREFECIMENTO)

O meio refrigerante na maioria dos casos é água com aditivos para rebaixar o ponto de congelação (por exemplo: etileno-glicol, recomendado para utilização em regiões mais frias) e para proteger contra a corrosão (óleos emulsionáveis ou compostos que, em contato com a água, tendem a formar películas plásticas). A quantidade do meio refrigerante é pequena (de 3 a 6 litros), para poder chegar rapidamente à temperatura de serviço; eventual reserva é feita no radiador e tanque de expansão.
O rebaixamento da temperatura da água no radiador é da ordem de 5°C. As bolhas de vapor que se formam nos pontos de pressão mais baixa (antes da bomba) devem ser eliminadas através da linha “i”, se condensam. A capacidade de pressão da bomba centrífuga é de 10 a 20 m de elevação e a quantidade de água em circulação é proporcional à velocidade. O fluxo do meio de refrigeração é controlado por válvula(s) termostática(s).

Figura 51 – Sistema de Refrigeração (ou de arrefecimento) do motor diesel (típico)

É falsa a ideia de que a eliminação da válvula termostática melhora as condições de refrigeração do motor. Muitos mecânicos, ao se verem diante de problemas de superaquecimento do motor, eliminam a válvula termostática, permitindo que o motor trabalhe abaixo das temperaturas ideais em condições de poucas solicitações e, quando sob regime de maior rotação e carga, não disponha da quantidade suficiente de água para troca de calor. A pressão interna do sistema é controlada pela válvula existente na tampa do radiador (ou do tanque de expansão) que, em geral, é menor que 1,0 at. Pressões entre 0,5 e 1,0 at, permitem o dimensionamento do radiador com menor capacidade, entretanto, com pressões nesta faixa, as juntas e vedações ficam submetidas a solicitações mais elevadas. É necessário manter a pressurização adequada do sistema de refrigeração, de acordo com as recomendações do fabricante do motor, pois baixas pressões proporcionam a formação de bolhas e cavitação nas camisas dos cilindros.

Os cabeçotes devem receber um volume adequado de água, mesmo com temperaturas baixas, para não comprometer o funcionamento das válvulas de admissão e escapamento. Normalmente, a pressão de trabalho do sistema de arrefecimento encontra-se estampada na tampa do radiador. Ao substituir a tampa, é necessário utilizar outra de mesma pressão.

Figura 52 – Válvula Termostática para regulação do fluxo de água de refrigeração.
Água de Refrigeração

A água do sistema de refrigeração do motor deve ser limpa e livre de agentes químicos corrosivos tais como cloretos, sulfatos e ácidos. A água deve ser mantida levemente alcalina, com o valor do PH em torno de 8.0 a 9.5. Qualquer água potável que se considere boa para beber pode ser tratada para ser usada no motor. O tratamento da água consiste na adição de agentes químicos inibidores de corrosão, em quantidade conveniente, geralmente por meio de um filtro instalado no sistema, conforme recomendado pelo fabricante. A qualidade da água não interfere no desempenho do motor, porém a utilização de água inadequada, a longo prazo, pode resultar em danos irreparáveis. A formação de depósitos sólidos de sais minerais, produzidos por água com elevado grau de dureza, que obstruem as passagens, provocando restrições e dificultando a troca de calor, são bastante frequentes. Água muito ácida pode causar corrosão eletrolítica entre materiais diferentes.

O tratamento prévio da água deve ser considerado quando, por exemplo, for encontrado um teor de carbonato de cálcio acima de 100 ppm ou acidez, com PH abaixo de 7.0.

O sistema de arrefecimento, periodicamente, deve ser lavado com produtos químicos recomendados pelo fabricante do motor. Geralmente é recomendado um “flushing” com solução a base de ácido oxálico ou produto similar, a cada determinado numero de horas de operação.

SISTEMA DE PARTIDA

Os dispositivos de partida do motor Diesel podem ser elétricos, pneumáticos ou a mola. A partida elétrica é empregada na maioria dos casos. Utiliza-se se a partida pneumática ou a mola, onde, por qualquer motivo, não seja viável a utilização de partida elétrica, que é o meio de menor custo. A partida a mola só é aplicável em motores Diesel de menor porte, abaixo de 100 CV. Para motores Diesel de grande cilindrada, a partida a ar comprimido é feita por meio da descarga de certa quantidade de ar sob alta pressão em um cilindro predefinido, cujo êmbolo é posicionado próximo ao PMS para receber o primeiro impulso. Ao deslocar-se rapidamente em sentido descendente, faz com que em outros cilindros os êmbolos atinjam o PMS do tempo de compressão e recebam injeção de combustível, iniciando o funcionamento. Nos motores de menor porte, pode-se instalar um motor de partida a ar comprimido, que funciona de modo similar ao motor elétrico. Geralmente esta solução é adotada em ambientes onde, por motivo de segurança, não se permitam o uso de componentes elétricos que possam produzir faíscas.

A potência do motor de partida para os motores Diesel varia de 0,6 a 1,2 CV por litro de cilindrada do motor Diesel. (Valores mais baixos para motores de maior cilindrada e vice-versa). Devido ao consumo de energia durante as partidas, os motores Diesel, atualmente, até cerca de 200 CV, utilizam sistema elétrico de 12 Volts. Para os motores maiores, utiliza-se sistemas de 24 Volts. O motor de partida é dotado de um pinhão na extremidade do eixo (geralmente com 9, 10 ou 11 dentes), montado sobre ranhuras helicoidais que permitem o seu movimento no sentido axial. Este mecanismo é normalmente denominado “Bendix”. Quando o motor de partida é acionado, o pinhão avança sobre as ranhuras helicoidais e acopla-se à uma engrenagem instalada na periferia do volante, conhecida como cremalheira do volante, que, na maioria dos motores, tem 132 dentes. (Existem motores com relação cremalheira / pinhão de até 20 : 1). O movimento do pinhão arrasta...
o volante fazendo com que a árvore de manivelas do motor comece a girar. Nos motores Diesel em boas condições, entre 80 e 120 rpm já há pressão de compressão suficiente para a auto-ignição e o início de funcionamento, embora existam motores que necessitam de até 350 rpm para partir. Ao iniciar o funcionamento, o motor aumenta a rotação por seus próprios meios e tende a arrastar o motor de partida, porém, como o pinhão está encaixado nas ranhuras helicoidais, ele é forçado a recuar, desacoplando-se da cremalheira do volante e, até que o operador libere a chave de partida, o motor de partida irá girar em vazio.

Motores Diesel antigos utilizam dispositivos auxiliares de partida. Os motores modernos só necessitam desses dispositivos quando operando em ambientes de baixas temperaturas (menos de zero °C). São vários os recursos auxiliares de partida a frio. O mais utilizado atualmente é a injeção de produtos voláteis (éter, por exemplo) no coletor de admissão. Mas há motores que são dotados de eletrodos incandescentes, que são alimentados pela(s) bateria(s) durante a partida, para auxiliar o início de funcionamento.

EFEITO DO TURBO-ALIMENTADOR

Normalmente denominado por turbina, supercharger, turbo-compressor, sobrealimentador, supercarregador, ou simplesmente turbo, o que mais importa são os seus efeitos sobre o desempenho do motor.

No caso dos motores Diesel, tem a finalidade de elevar a pressão do ar no coletor de admissão acima da pressão atmosférica, fazendo com que, no mesmo volume, seja possível depositar mais massa de ar, e, consequentemente, possibilitar que maior quantidade de combustível seja injetada, resultando em mais potência para o motor, além de proporcionar maior pressão de compressão no interior do cilindro, o que produz temperaturas de ignição mais altas e, por consequência, melhor aproveitamento do combustível com redução das emissões de poluentes.

Para melhorar os efeitos do turbo-alimentador, adiciona-se ao sistema de admissão de ar, um processo de arrefecimento do ar admitido, normalmente denominado de aftercooler ou intercooler,
dependendo da posição onde se encontra instalado, com a finalidade de reduzir a temperatura do ar, contribuindo para aumentar, ainda mais, a massa de ar no interior dos cilindros. A tendência, para o futuro, é que todos os motores Diesel sejam turbo-alimentados. Nos motores turbo-alimentados, o rendimento volumétrico, em geral, é maior que 1.

Turbina de gás de escapamento com fluxo de fora para dentro.

\[a = \text{admissão do gás de escapamento}; \]
\[b = \text{saída do gás de escapamento}; \]
\[c = \text{admissão do ar}; \]
\[d = \text{saída do ar}; \]
\[e = \text{entrada do óleo lubrificante}; \]
\[f = \text{saída do óleo lubrificante}; \]
\[g = \text{roda motriz da turbina}; \]
\[h = \text{rotor da turbina}; \]
\[i = \text{rotor da ventoinha}; \]
\[k = \text{bucha flutuante de mancal}. \]

Figura 55 – Turbo-alimentador para motor Diesel.

O turbo-alimentador trabalha em rotações muito elevadas (80.000 a 100.000 RPM), temperatura máxima do gás de escape até 790°C, proporciona um ganho de potência, nos motores Diesel, da ordem de 30 a 40% e redução do consumo específico de combustível no entorno de 5%. Devido ao aumento da pressão máxima de combustão, exige-se uma vedação sólida e uma maior pressão da injeção. O fluxo do óleo para as guias das válvulas deve ser garantido, devido a sobrepressão do gás nos canais, e o primeiro anel de segmento do pistão motor deve ser instalado em canaleta reforçada com suporte especial de aço ou ferro fundido.
O turbo-alimentador, devido às altas rotações de operação, trabalha com o eixo apoiado sobre dois mancais de buchas flutuantes, que recebem lubrificação tanto interna quanto externamente. Ao parar o motor, durante um certo intervalo de tempo, o turbo-alimentador continuará girando por inércia sem receber óleo lubrificante, uma vez que a bomba de óleo parou de funcionar. Neste período, ocorre contato entre a bucha e a carcaça e também entre a bucha e o eixo, provocando desgaste. A duração do período em que o turbo-alimentador permanece girando por inércia depende da rotação em que operava o motor quando foi desligado, bem como da carga que estava submetido. Nos grupos Diesel-geradores, onde habitualmente se desliga o motor em alta rotação imediatamente após o alívio da carga, a durabilidade do turbo-alimentador fica sensivelmente reduzida, podendo ser medida em número de partidas ao invés de horas de operação. Nas demais aplicações, onde não há paradas freqüentes do motor em alta rotação, a durabilidade do turbo-alimentador pode chegar a até 4.000 horas, contra o máximo de 1.000 partidas nos grupos Diesel-geradores. Por isso recomenda-se não parar o motor imediatamente após o alívio da carga, deixando-o operar em vazio por um período de 3 a 5 minutos. Existe um dispositivo acumulador de pressão para ser instalado na linha de lubrificação do turbo-alimentador que ameniza os efeitos das paradas, porém não é fornecido de fábrica pelos fabricantes de motores Diesel, devendo, quando for o caso, ser instalado pelo usuário.

Os reparos no turbo-alimentador devem ser feitos, de preferência, pelo fabricante. A maioria dos distribuidores autorizados disponibiliza para os usuários a opção de venda de remanufaturado a base de troca, que além de ser rápida, tem a mesma garantia da peça nova. Em geral, as oficinas que se dizem especializadas, utilizam buchas de bronze (em substituição das buchas sinterizadas) e usinam as carcaças quando da realização de recondicionamentos e, na maioria dos casos, não dispõem do equipamento para balanceamento do conjunto rotativo, fazendo com que a durabilidade de um turbo-alimentador recondicionado nessas condições fique ainda mais reduzida.

O defeito mais frequente é o surgimento de vazamentos de óleo lubrificante, que quando ocorre pelo lado do rotor frio, pode consumir o óleo lubrificante do carter sem que seja percebido. Em geral, o mau funcionamento do turbo-alimentador é percebido pela perda de potência do motor sob plena carga e pela presença de óleo lubrificante e fumaça preta na tubulação de escapamento. Em alguns casos, pode-se perceber ruído anormal.

Filtro de ar obstruído também é uma causa freqüente de defeito do turbo-alimentador. O efeito da sucção do rotor do compressor no interior da carcaça puxa óleo lubrificante através das vedações do eixo, provocando deficiência de lubrificação e consumo excessivo de lubrificante.
Figura 57 - Seção longitudinal de um motor OHC Chrysler 4 cilindros de 2,2 litros
Figura 58 - Motor Diesel Cummins modelo 6CT8.3, em corte.
TERMOS IMPORTANTES (PORTUGUÊS - INGLÊS)

<table>
<thead>
<tr>
<th>PORTUGUÊS</th>
<th>INGLÊS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Motor 8 cilindros em V com injeção de combustível e Ignição por Centelha</td>
<td>01 eight-cylinder V (vee) fuel-injection spark-ignition engine</td>
</tr>
<tr>
<td>02 ventilador</td>
<td>02 fan line</td>
</tr>
<tr>
<td>03 embreagem do ventilador para acionamento viscoso</td>
<td>03 fan clutch for viscous drive</td>
</tr>
<tr>
<td>04 distribuidor da ignição (distribuidor) com avanço à vácuo</td>
<td>04 ignition distributor (distributor) with vacuum timing control</td>
</tr>
<tr>
<td>05 tambor de corrente dupla</td>
<td>05 double roller chain</td>
</tr>
<tr>
<td>06 mancal do eixo de cames</td>
<td>06 camshaft bearing</td>
</tr>
<tr>
<td>07 duto de respiro</td>
<td>07 air-bleed duct</td>
</tr>
<tr>
<td>08 tubo de óleo para lubrificação do eixo de cames</td>
<td>08 oil pipe for camshaft lubrication</td>
</tr>
<tr>
<td>09 eixo de cames, comando de válvulas no cabeçote</td>
<td>09 camshaft, an overhead camshaft</td>
</tr>
<tr>
<td>10 borboleta do carburador</td>
<td>10 venturi throat</td>
</tr>
<tr>
<td>11 silenciador interno</td>
<td>11 intake silencer (absorption silencer, Am. Absorption muffler)</td>
</tr>
<tr>
<td>12 regulador de pressão de combustível</td>
<td>12 fuel pressure regulator</td>
</tr>
<tr>
<td>13 coletor de admissão</td>
<td>13 inlet manifold</td>
</tr>
<tr>
<td>14 bloco do motor</td>
<td>14 cylinder crankcase</td>
</tr>
<tr>
<td>15 volante</td>
<td>15 flywheel</td>
</tr>
<tr>
<td>16 biela</td>
<td>16 connecting rod (piston rod)</td>
</tr>
<tr>
<td>17 mancal de linha do virabrequim</td>
<td>17 cover of crankshaft bearing</td>
</tr>
<tr>
<td>18 virabrequim</td>
<td>18 crankshaft</td>
</tr>
<tr>
<td>19 parafuso de drenagem do óleo</td>
<td>19 oil bleeder screw (oil drain plug)</td>
</tr>
<tr>
<td>20 corrente da bomba de óleo</td>
<td>20 roller chain of oil pump drive</td>
</tr>
<tr>
<td>21 abafador de vibração</td>
<td>21 vibration damper</td>
</tr>
<tr>
<td>22 eixo motor do distribuidor</td>
<td>22 distributor shaft for the ignition distributor (distributor)</td>
</tr>
</tbody>
</table>
BIBLIOGRAFIA

3. BOULANGER, P. e ADAM, B. Motores Diesel. Editora Hemus São Paulo. SP.
10. SENÇO, Dr. WLASTERMILER. Pequena História dos Transportes. Revista Pesquisa e Tecnológica FEI
12. Microsoft Encarta Encyclopedia 1996
13. Agência New Motor @ge de Notícias: por Guto Ostergrenn (www.newmotorage.com/Tecno/3-22.html)
14. Sites da Internet:

Combustível
⇒ www.shell.com.br/produtos/bv.htm
⇒ www.fisica.net/quimica/resumo28.htm
⇒ www.br-petrobras.com.br/br/prod/octa.html
⇒ www.petrobras.com.br/conpet/gasolina.html

Mecânica Automóvel
⇒ www.mecanico.com.br
⇒ www.agentel.com.br
⇒ www.mecaniciaonline.com.br
Crash Test Information

- www.nhtsa.dot.gov
- http://gwuva.gwu.edu/ncac
- www.insure.com/auto/index.html
- www.fia.com/tourisme/safety/safint.thm
- www.osa.go.jp/2e.html
- www.webmotors.com.br
- www.newmorage.com

Treinamentos, Fitas de Vídeo, Curiosidades

- www.setenet.com.br Fitas de vídeo, apostilas
- www.saebr.org.br Livros, revistas, cursos e mini-cursos
- www.sae.org Livros, revistas, artigos técnicos
- www.centrotecnico.com.br Treinamento
- www.oficinaabr.com.br Revista especializada
- www.duvidacruel.com.br Informações interessantes

Peças e Acessórios

- www.dana.com.br Autopeças
- www.ngk.com.br Velas e cabos de ignição, sensores de detonação e oxigênio
- www.delphiauto.com Autopeças, sistemas e sub-sistemas automotivos
- www.eaton.com.br Cabeçotes, embreagens, transmissões
- www.fras-le.com.br Pastilhas e lonas de freio
- www.fnmaster.com.br Freios
- www.ksp.com.br Autopeças, pistões, cilindros de alumínio
- www.lukbrasil.com.br Embreagens, sistemas hidráulicos/eletrônicos de acionamento
- www.bosh.de Autopças elétricas, injeção eletrônica, eletrônica embarcada
- www.sabo.com.br Autopças, retentores, juntas e mangueiras
- www.sachs.de Embreagens e sistemas de suspensão
- www.siemens.com.br Sist. de injeção, controles de emissões, conversores catalíticos
- www.sifco.com.br Eixos dianteiros, virabrequins, coroa, pinhões, semi-eixos
- www.kncl.krupp.com.br Componentes de motor, suspensão, direção e transmissão
- www.trw.com Componentes de direção, suspensão, cintos de segurança, airbags
- www.visteon.com.br Sistemas e sub-sistemas automotivos
- www.zf.group.com.br Sistemas de transmissões e direções
- www.elliott-turbocharger.com Sistemas de sobre-alimentação
Motores Especiais

Wankel
⇒ www.monito.com/wankel
⇒ www.wankel-rotary.com
⇒

QuasiTurbine
⇒ www.quasiturbine.com
⇒
<table>
<thead>
<tr>
<th>Montadoras</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.gm.com.br</td>
<td>www.honda.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.citroen.com.br</td>
<td>www.jeep.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.ferraribrasil.com.br</td>
<td>www.mazda.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.fiat.com.br</td>
<td>www.mercedes-benz.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.ford.com.br</td>
<td>www.mitsubishi-motors.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.nissan.com.br</td>
<td>www.suzuki.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>www.peugeot.com.br</td>
<td>www.toyota.com.br</td>
</tr>
<tr>
<td>Logo</td>
<td>Website</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Renault</td>
<td>www.renault.com.br</td>
</tr>
<tr>
<td>Troller</td>
<td>www.troller.com.br</td>
</tr>
<tr>
<td>Volvo</td>
<td>www.volvo.com.br</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>www.volkswagen.com.br</td>
</tr>
<tr>
<td>Subaru</td>
<td>www.subaru.com.br</td>
</tr>
<tr>
<td>Chrysler</td>
<td>www.chrysler.com</td>
</tr>
<tr>
<td>Rolls-Royce</td>
<td>www.roll-royceandbentley.co.uk</td>
</tr>
<tr>
<td>Daimler</td>
<td>www.daimlerchrysler.com</td>
</tr>
<tr>
<td>World Of Rover</td>
<td>www.rovercars.com</td>
</tr>
<tr>
<td>Cadillac</td>
<td>www.cadillac.com</td>
</tr>
<tr>
<td>Audi</td>
<td>www.audi.com</td>
</tr>
<tr>
<td>BMW</td>
<td>www.bmw.com</td>
</tr>
<tr>
<td>Hyundai</td>
<td>www.hyundai.com</td>
</tr>
</tbody>
</table>